1
|
Shen C, Li X, Qin J. Kiwifruit-Agaricus blazei intercropping effectively improved yield productivity, nutrient uptake, and rhizospheric bacterial community. Sci Rep 2024; 14:16546. [PMID: 39019951 PMCID: PMC11255323 DOI: 10.1038/s41598-024-66030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| | - Jianfeng Qin
- Ankang Academy of Agricultural Sciences, Ankang, 725000, China
| |
Collapse
|
2
|
Li Y, Xu G, Yu Y. Freeze-thaw aged polyethylene and polypropylene microplastics alter enzyme activity and microbial community composition in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134249. [PMID: 38603909 DOI: 10.1016/j.jhazmat.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Lu YS, Liu ZB, Xu YY, Sha JY, Qu D, Sun YS. Uptake and accumulation of di(2-ethylhexyl) phthalate (DEHP) in a soil-ginseng system and toxicological mechanisms on ginseng (Panax ginseng C.A. Meyer). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170040. [PMID: 38215853 DOI: 10.1016/j.scitotenv.2024.170040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is regarded as a priority environmental pollutant. This study explored the adsorption and accumulation of DEHP within the ginseng-soil system and the mechanism of DEHP toxicity to ginseng (Panax ginseng C.A. Meyer). Under exposure to 22.10 mg/kg DEHP in soil, DEHP mainly accumulated in ginseng leaves (20.28 mg/kg), stems (4.84 mg/kg) and roots (2.00 mg/kg) after 42 days. The oxidative damage, metabolism, protein express of ginseng were comprehensively measured and analyzed. The results revealed that MDA presented an activation trend in ginseng stems and leaves after 42 days of DEHP exposure, while the opposite trend was observed for POD. Levels of ginsenoside metabolites Rg2, Rg3, Rg5, Rd, Rf and CK decreased in the ginseng rhizosphere exudates under DEHP stress. Further investigations revealed that DEHP disrupts ginsenoside synthesis by inducing glycosyltransferase (GS) and squalene synthase (SS) protein interactions. Molecular docking indicated that DEHP could stably bind to GS and SS by intermolecular forces. These findings provide new information on the ecotoxicological effect of DEHP on ginseng root.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Bo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
4
|
Zhang C, Li S, Tang L, Li S, Hu C, Zhang D, Chao L, Liu X, Tan Y, Deng Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. BIOSENSORS 2024; 14:121. [PMID: 38534228 DOI: 10.3390/bios14030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Lingxiao Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Dan Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
5
|
Wang L, Dou Z, Ma C, Jia X, Wang H, Bao W, Wang L, Qu J, Zhang Y. Remediation of di(2-ethylhexyl) phthalate (DEHP) contaminated black soil by freeze-thaw aging biochar. J Environ Sci (China) 2024; 135:681-692. [PMID: 37778838 DOI: 10.1016/j.jes.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 10/03/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a complex structure with high toxicity, is a common organic pollutant. This study investigated the effects of fresh biochar (FBC), and freeze-thaw cycled aged biochar (FTC-BC) on DEHP-contaminated soils using a pot experiment. The specific surface area of FBC increased from 145.20 to 303.50 m2/g, and oxygen-containing functional groups increased from 1.26 to 1.48 mol/g after freeze-thaw cycles, greatly enhancing the adsorption of DEHP by biochar in the soil. The comprehensive radar chart evaluation showed that FBC and FTC-BC reduced DEHP growth stress and improved the soil properties. Compared with FBC, FTC-BC performed better in protecting the normal growth of pakchoi and improving soil properties. In addition, the application of biochar increased the diversity and abundance of bacteria in the DEHP-contaminated soil and changed the composition of the soil bacterial community. The partial least squares path model (PLS-PM) showed that adding biochar as a soil remediation agent significantly positively impacted soil nutrients and indirectly reduced the DEHP levels in soil and plants by increasing soil microbial diversity. Compared with FBC, FTC-BC creates a more satisfactory living environment for microorganisms and has a better effect on the degradation of DEHP in the soil. This study provides a theoretical basis for future biochar remediation of DEHP-contaminated soils in cold high-latitude regions.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Regulatory mechanisms of submerged macrophyte on bacterial community recovery in decabromodiphenyl ether contaminated sediment: Microbiological and metabolomic perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122616. [PMID: 37757929 DOI: 10.1016/j.envpol.2023.122616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Polybrominated diphenyl ether contamination in sediments poses serious threats to human health and ecological safety. Despite the broad application of submerged macrophytes for remediating pollutants, their regulatory influence on bacterial communities in contaminated sediments remains unclear. Herein, we analyzed the effects of decabromodiphenyl ether (BDE-209) and Hydrilla verticillata on sediment bacterial community and function using 16S rRNA gene sequencing and sediment metabolomics. Results showed that BDE-209 significantly inhibited sediment bacterial diversity and metabolic functions. It also enhanced bacterial interactions and altered both the bacterial community and metabolite composition. Uridine and inosine were critical metabolites that positively co-occurred with bacterial taxa inhibited by BDE-209. Notably, planting H. verticillata effectively alleviated the adverse impacts of BDE-209 by reducing its residuals, increasing the total organic carbon, and modifying metabolic profiles. Such mitigation was evidenced by enhancing bacterial diversity, restoring metabolic functions, and attenuating bacterial interactions. However, mitigation effectiveness depended on treatment time. Additionally, propionic acid, palmitic acid, and palmitoleic acid may facilitate the restoration of phylum Proteobacteria and class Planctomycetacia in H. verticillata planted sediment. Together, these findings improve understanding of BDE-209's impacts on aquatic ecosystems and provide valuable insights for ecological restoration using submerged macrophytes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| |
Collapse
|
7
|
Kim YR, Sang MK. Effects of di-(2-ethylhexyl) phthalate on growth, metabolism, and virulence of the plant pathogenic bacterium Acidovorax citrulli. Front Cell Infect Microbiol 2023; 13:1228713. [PMID: 37692166 PMCID: PMC10485622 DOI: 10.3389/fcimb.2023.1228713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Acidovorax citrulli is a seed-borne bacterial pathogen that causes bacterial fruit blotch in cucurbits and severely affects the production of cucumbers and watermelons globally. In this study, we investigated the effects of di-(2-ethylhexyl) phthalate (DEHP) on the growth, metabolism, and virulence of A. citrulli. Bacterial population was not affected by DEHP exposure; moreover, significant changes were not observed in lipid peroxidation, membrane permeability, and nucleic acid leakage. However, palmitoleic acid content was increased in the cell membrane of DEHP-exposed A. citrulli. Further, DEHP exposure increased the activity of TCA cycle-related enzymes, including α-ketoglutarate dehydrogenase and succinyl-CoA synthetase, along with increase in the content of glutamate, succinate, fumarate, and malate in TCA cycle. Additionally, total 270 genes were differentially expressed by the treatment, of which 28 genes were upregulated and 242 genes, including those related to translation, flagellum-dependent cell motility, and flagellum assembly, were downregulated. Regarding virulence traits, swimming activity was decreased in DEHP-exposed A. citrulli; however, biofilm formation was not affected in in vitro assay. Moreover, relative expression of pathogenicity genes, including hrpX and hrpG, were decreased in DEHP-exposed A. citrulli compared to that of unexposed A. citrulli. Therefore, these results suggest that DEHP accumulation in soil could potentially influence the metabolism and virulence traits of A. citrulli.
Collapse
Affiliation(s)
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
8
|
Chen W, Zhao X, Xu W, Hu Y, Hou R, Wang Z. Dimethyl phthalate inhibits the growth of Escherichia coli K-12 by regulating sugar transport and energy metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13702-13710. [PMID: 36136186 DOI: 10.1007/s11356-022-23083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Dimethyl phthalate (DMP) is one of the most widely used plasticizers, and it is easily released into the environment, posing a threat to microbes. In this study, the impact of DMP on the uptake and metabolism of sugars in E. coli K-12 was assessed using proteomics, computational simulation analysis, transcriptome analysis, and sugar utilization experiments. DMP contamination inhibited the growth of E. coli K-12 and downregulated the expression of proteins in ATP-binding cassette (ABC) transporters and the phosphotransferase (PTS) system of E. coli K-12, which are primarily involved in the transmembrane transport of sugars. DMP formed a stable complex with sugar transporters and changed the rigidity and stability of the proteins. Furthermore, DMP treatment decreased the utilization of L-arabinose, glucose, D-xylose, and maltose. Moreover, carbon metabolism and oxidative phosphorylation were also downregulated by DMP. Our study shows that DMP reduces the uptake of sugars and ATP production and subsequently inhibits the growth of E. coli K-12.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Xiaosong Zhao
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Weihui Xu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Yunlong Hu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Ruixing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhigang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China.
| |
Collapse
|
9
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
10
|
Yao X, Zhang J, Wang C, Wang Q, Li X, Zhang D, Wang J, Zhu L, Wang J. Toxicity of dibutyl phthalate to pakchoi (Brassica campestris L.): Evaluation through different levels of biological organization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157943. [PMID: 35952877 DOI: 10.1016/j.scitotenv.2022.157943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) is a typical persistent organic pollutant with a high load in the agricultural soils of vegetable crops. Currently, studies on the toxicity of DBP in vegetable crops are limited. Therefore, in this study, pakchoi (Brassica campestris L.), a typical vegetable crop, was used to evaluate the toxic effects of DBP. Pakchoi was exposed to DBP for 24 d at three doses (2, 20, and 200 mg/kg), and the phenotypic, biochemical, and molecular indicators were determined. The results revealed that DBP could reduce the emergence of pakchoi and inhibit plant height, root length, fresh weight, and leaf area. At the biochemical level, DBP exposure could reduce the content of three typical photosynthetic pigments (chlorophyll a and b and carotenoids). The effects of DBP exposure on the quality of pakchoi were primarily through reduced soluble sugar and increased proline contents. In addition, O2·- and H2O2 levels increased after DBP stress, and the corresponding antioxidant enzymes (SOD, POD, and CAT) were activated to resist oxidative damage. The dose- and time-dependent toxicities of DBP to pakchoi were demonstrated using an integrated biological response index. Finally, the molecular-level results on Day 24 showed that the three antioxidant enzyme genes (sod, pod, and cat) were significantly downregulated, and the antioxidant enzyme genes were more sensitive biomarkers than the enzyme activities. However, the expression level of enzyme genes was opposite to that of enzyme activity (SOD and POD); thus, DBP might directly interact with these enzymes. Molecular docking showed that DBP could stably bind near the SOD/POD active center through intermolecular interaction forces. This study provides essential information on the risk of DBP toxicity to vegetable crops.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Weifang, Shandong 262400, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
11
|
Zhou K, Cheng R, Zhu M, Yang M, Shen X, Luo X, Ma L, Xu L, Zhang J. The influence of perinatal maternal exposure to dibutyl phthalate on glucolipid metabolism in adult female offspring. Obes Res Clin Pract 2022; 16:500-506. [PMID: 36280576 DOI: 10.1016/j.orcp.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Maternal exposure to dibutyl phthalate (DBP) may result in obesity in female offspring. However, the underlying mechanisms remain elusive. MATERIALS AND METHODS Sprague-Dawley rats were intraperitoneally injected with different doses of DBP and corn oil from gestational day 7 until the end of lactation. The weights, visceral fat percentage, serum lipid, insulin and glucose, protein levels of PI3K signal pathway in muscle were detected in F1 female offspring. RESULTS Although the birth weight of F1 female offspring was not different among groups, the weights were heavier in DBP groups from postnatal day 7 to adult (P < 0.001). The visceral adipose percentage in adult female offspring was increased by perinatal exposure to DBP (P < 0.001). Decreased serum level of triglyceride (P = 0.001) in F1 female offspring was found in DBP group as compared to control, especially in medium and high DBP. However, none difference was found for fasting glucose, prolactin, HOMA-IR, fasting insulin, total cholesterol, adiponectin. Different protein levels of GPR30 were observed in muscle of female offspring among four groups (P = 0.016). The protein level of AKT seemed higher in DBP group but without statistical significance (P = 0.05). None difference was observed for the protein levels of PI3K, p-AKT, pAKT/AKT, PTEN, GLUT4, InsR, IRS. CONCLUSION Maternal perinatal exposure to DBP might induce obesity and accumulation of visceral adipose tissue for the adult female offspring. Serum glucolipid and local signal transduction of PTEN/PI3K/AKT pathway in muscle were not adversely affected by perinatal exposure to DBP for adult female offspring.
Collapse
Affiliation(s)
- Kunyan Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Ran Cheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China.
| | - Mei Zhu
- Sichuan Academy of Environmental Sciences, People's Republic of China
| | - Meina Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyang Shen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Li Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Surgery Department, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China
| | - Liangzhi Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China; Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China.
| |
Collapse
|
12
|
Manzi HP, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Khan A, Yoon Y, Salama ES. Effect of dibutyl phthalate on microalgal growth kinetics, nutrients removal, and stress enzyme activities. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105741. [PMID: 36122470 DOI: 10.1016/j.marenvres.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The dibutyl phthalate (DPB) is an emerging plasticizer contaminant that disrupts the biological processes of primary producers, especially phytoplankton. In this study, two microalgal species (Chlorella sp. GEEL-08 and Tetradesmus dimorphus GEEL-04) were exposed to various concentrations of DBP extending from 0 to 100 mg/L. The growth kinetics, N-nitrate, and P-phosphate removal efficiency were assessed. The response enzymes such as malonaldehyde (MDA) and superoxide dismutase (SOD) were also investigated. The results revealed that the Chlorella sp. GEEL-08 at 10 mg/L concentration of DBP exhibited higher growth (0.88 OD680nm) compared to T. dimorphus GEEL-04 (0.80 OD680nm). More than 94% of N and P were removed from culture media by both microalgal species. The DBP (>50 mg/L) significantly exacerbates the growth of both microalgae species and the growth inhibition ratio was in the range of 3.6%-25.9%. The SOD activity and MDA were higher in T. dimorphus culture media than in the culture media of Chlorella sp. The results reflect the hazard and the risk of plasticizers on primary producers in the ecosystem.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou City, Gansu Province, 730000, PR China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China.
| |
Collapse
|
13
|
Cui Y, Li B, Du J, Huo S, Song M, Shao B, Wang B, Li Y. Dibutyl phthalate causes MC3T3-E1 cell damage by increasing ROS to promote the PINK1/Parkin-mediated mitophagy. ENVIRONMENTAL TOXICOLOGY 2022; 37:2341-2353. [PMID: 35716031 DOI: 10.1002/tox.23600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) is a plasticizer widely used in daily production, which causes serious environmental pollution, and damage to brain, liver, kidney, and lung by producing excessive reactive oxygen species (ROS) after entering the body. DBP can also cause skeletal dysplasia, but it is unclear whether ROS is involved. In addition, overproduction of ROS can activate mitophagy, which is an important mechanism for regulating mitochondrial quality and cell homeostasis. In order to investigate whether DBP can damage MC3T3-E1 cells (osteoblast cell line) and whether ROS and mitophagy are involved, DBP toxicity experiment, Parkin gene silencing experiment, and N-acetylcysteine (NAC) intervention experiment were performed on MC3T3-E1 cells in turn. First, we found that DBP caused MC3T3-E1 cell viability decline and osteogenic dysfunction, accompanied by the overproduction of ROS and the activation of mitophagy. Then, we found that silencing Parkin expression alleviated DBP-induced apoptosis and osteogenic dysfunction of MC3T3-E1 cells. In addition, NAC treatment inhibited the PINK1/Parkin-mediated mitophagy and alleviated the apoptosis and osteogenic dysfunction of MC3T3-E1 cells caused by DBP. Our research results showed that DBP could cause MC3T3-E1 cell damage by increasing ROS to promote the PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ben Wang
- College of Animal Science, JiLin Agricultural Science and Technology College, Jilin, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Chen W, Guo R, Wang Z, Xu W, Hu Y. Dimethyl phthalate destroys the cell membrane structural integrity of Pseudomonas fluorescens. Front Microbiol 2022; 13:949590. [PMID: 36071970 PMCID: PMC9441906 DOI: 10.3389/fmicb.2022.949590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
A Gram-negative bacteria (Pseudomonas fluorescens) was exposed to different concentrations (0, 20, and 40 mg/L) of dimethyl phthalate (DMP) for 8 h, and then Fourier transform infrared spectroscopy (FTIR) analysis, lipopolysaccharide content detection, analysis of fatty acids, calcein release test, proteomics, non-targeted metabolomics, and enzyme activity assays were used to evaluate the toxicological effect of DMP on P. fluorescens. The results showed that DMP exposure caused an increase in the unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio and in the release of lipopolysaccharides (LPSs) from the cell outer membrane (OM) of P. fluorescens. Moreover, DMP regulated the abundances of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) of P. fluorescens and induced dye leakage from an artificial membrane. Additionally, excessive reactive oxygen species (ROS), malondialdehyde (MDA), and changes in antioxidant enzymes (i.e., catalase [CAT] and superoxide dismutase [SOD]) activities, as well as the inhibition of Ca2+-Mg2+-ATPase and Na+/K+-ATPase activities in P. fluorescens, which were induced by the DMP. In summary, DMP could disrupt the lipid asymmetry of the outer membrane, increase the fluidity of the cell membrane, and destroy the integrity of the cell membrane of P. fluorescens through lipid peroxidation, oxidative stress, and ion imbalance.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Ruxin Guo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Zhigang Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- *Correspondence: Zhigang Wang
| | - Weihui Xu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Yunlong Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
15
|
Beale DJ, Jones OA, Bose U, Broadbent JA, Walsh TK, van de Kamp J, Bissett A. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg Top Life Sci 2022; 6:185-199. [PMID: 35403668 PMCID: PMC9023019 DOI: 10.1042/etls20210261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Current environmental monitoring efforts often focus on known, regulated contaminants ignoring the potential effects of unmeasured compounds and/or environmental factors. These specific, targeted approaches lack broader environmental information and understanding, hindering effective environmental management and policy. Switching to comprehensive, untargeted monitoring of contaminants, organism health, and environmental factors, such as nutrients, temperature, and pH, would provide more effective monitoring with a likely concomitant increase in environmental health. However, even this method would not capture subtle biochemical changes in organisms induced by chronic toxicant exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of ecosystem health-related data that can address this knowledge gap and provide much-needed additional lines of evidence to environmental monitoring programs. Its use would therefore be of great benefit to environmental management and assessment. Unfortunately, the science of 'ecosurveillance', especially omics-based ecosurveillance is not well known. Here, we give an overview of this emerging area and show how it has been beneficially applied in a range of systems. We anticipate this review to be a starting point for further efforts to improve environmental monitoring via the integration of comprehensive chemical assessments and molecular biology-based approaches. Bringing multiple levels of omics technology-based assessment together into a systems-wide ecosurveillance approach will bring a greater understanding of the environment, particularly the microbial communities upon which we ultimately rely to remediate perturbed ecosystems.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Oliver A.H. Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A. Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thomas K. Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| |
Collapse
|
16
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Cui J, Ma Y. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127258. [PMID: 34844367 DOI: 10.1016/j.jhazmat.2021.127258] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Research on microplastic pollution of terrestrial soils is catching up with the aquatic environment, especially agricultural soil systems. Plastic residues have caused various environmental problems in mulch film extensively used agricultural areas. However, studies focusing specifically on the potential influence of mulch film residues on the metabolic cycle of soil systems have yet to be conducted. Here, high-throughput sequencing combined with metabolomics were first used to study the effects of residual mulch on soil microbial communities and related metabolic functions. Plastic film treatment did not significantly affect soil physicochemical properties including pH, organic matter and nitrogen, etc in short term. However, it did significantly changed overall community structure of soil bacteria, and interfered with complexity of soil bacterial symbiosis networks; exposure time and concentration of residues were particularly important factors affecting community structure. Furthermore, metabolomics analysis showed that film residue significantly changed soil metabolite spectrum, and interfered with basic carbon and lipid metabolism, and also affected basic cellular processes such as membrane transport and, in particular, interfered with the biosynthesis of secondary metabolites, as well as, biodegradation and metabolism of xenobiotics. Additionally, through linear discriminant and collinear analysis, some new potential microplastic degrading bacteria including Nitrospira, Nocardioidaceae and Pseudonocardiaceae have been excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
17
|
Tartaglia M, Bastida F, Sciarrillo R, Guarino C. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights. Int J Mol Sci 2020; 21:ijms21228455. [PMID: 33187080 PMCID: PMC7697097 DOI: 10.3390/ijms21228455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Soil is a complex matrix where biotic and abiotic components establish a still unclear network involving bacteria, fungi, archaea, protists, protozoa, and roots that are in constant communication with each other. Understanding these interactions has recently focused on metagenomics, metatranscriptomics and less on metaproteomics studies. Metaproteomic allows total extraction of intracellular and extracellular proteins from soil samples, providing a complete picture of the physiological and functional state of the “soil community”. The advancement of high-performance mass spectrometry technologies was more rapid than the development of ad hoc extraction techniques for soil proteins. The protein extraction from environmental samples is biased due to interfering substances and the lower amount of proteins in comparison to cell cultures. Soil sample preparation and extraction methodology are crucial steps to obtain high-quality resolution and yields of proteins. This review focuses on the several soil protein extraction protocols to date to highlight the methodological challenges and critical issues for the application of proteomics to soil samples. This review concludes that improvements in soil protein extraction, together with the employment of ad hoc metagenome database, may enhance the identification of proteins with low abundance or from non-dominant populations and increase our capacity to predict functional changes in soil.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
- Correspondence: ; Tel.: +39-824-305145
| |
Collapse
|