1
|
Bakirci M. Efficient air pollution mapping in extensive regions with fully autonomous unmanned aerial vehicles: A numerical perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168606. [PMID: 37977394 DOI: 10.1016/j.scitotenv.2023.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
It is noteworthy that comprehensive exploration of atmospheric measurements in the horizontal plane using aerial platforms, necessitating high autonomy, has not been extensively covered in the existing literature. This research presents a systematic numerical approach to effective air pollution mapping achieved through the integration of horizontal and vertical air pollution measurements conducted using a fully autonomous unmanned aerial vehicle (UAV) platform. The developed robust navigation model enables the UAV to efficiently scan the extensive measurement area, which is subdivided into smaller sub-areas using the polygonal decomposition technique, resulting in a comprehensive map of the entire region. Furthermore, technical analysis determines the optimal flight speed, leading to air pollution measurements in up to 30 % more areas and ensuring more consistent results. The simulation results illustrate the effective mapping of the entire area by aggregating air pollution measurements from sub-areas, with seamless transitions emphasizing the accuracy and consistency of the employed air pollution mapping technique. This systematic method offers numerous advantages, including rapid air pollution source identification and swift response capabilities. Moreover, this approach holds potential for various applications, such as forest fire monitoring and natural resources assessment, by equipping UAVs with additional equipment like cameras alongside atmospheric sensors.
Collapse
Affiliation(s)
- Murat Bakirci
- Unmanned/Intelligent Systems Lab, Faculty of Aeronautics and Astronautics, Tarsus University, Mersin 33400, Turkey.
| |
Collapse
|
2
|
Zhang F, Peng J, Chen L, Collins D, Li Y, Jiang S, Liu J, Zhang R. The effect of black carbon aging from NO 2 oxidation of SO 2 on its morphology, optical and hygroscopic properties. ENVIRONMENTAL RESEARCH 2022; 212:113238. [PMID: 35395235 DOI: 10.1016/j.envres.2022.113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric aging of black carbon (BC) leads to changes in its physiochemical properties, exerting complex effects on environment and climate. In this study, we have conducted laboratory chamber experiments to investigate the effects of BC aging on its morphology, hygroscopicity and optical properties by exposing monodisperse fresh BC particles to ambient ubiquitous species of nitrogen dioxide (NO2), sulfur dioxide (SO2) and ammonia (NH3) in absence of UV light. We show a rapid aging from highly fractal to compacted aggregates for the monodisperse BC particles with an initial diameter of 150 nm, with decline in the dynamic shape factor (χ) from about 1.8 to nearly 1. The effective density of the monodisperse BC particles increases from ∼0.54 to 1.50 g cm-3 accordingly. The aging process leads to that the light scattering, absorption, and single scattering albedo of the monodisperse BC particles are strongly enhanced by factors of 7.0, 1.8 and 3.0 respectively. By comparing with the BC aging from other mechanisms, we reveal a critical role of the composition of the coating materials on BC in determining its light absorption enhancement. Moreover, due to strong water uptake capacity of the aged BC particles, the light absorption enhancement (Eabs) could be 40-60% higher at humid atmosphere compared with dry conditions. This BC aging process from NO2 oxidation of SO2 may occur commonly in polluted regions and thus considerably alter its effects on regional air quality and climate.
Collapse
Affiliation(s)
- Fang Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Jianfei Peng
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lu Chen
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Don Collins
- Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yixin Li
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA
| | - Sihui Jiang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Jieyao Liu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Renyi Zhang
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Chen W, Cao X, Ran H, Chen T, Yang B, Zheng X. Concentration and source allocation of black carbon by AE-33 model in urban area of Shenzhen, southern China. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:469-483. [PMID: 35291691 PMCID: PMC8911177 DOI: 10.1007/s40201-022-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE In the urban region of Shenzhen, the changes in the concentration of Black carbon (BC) have been evaluated throughout the dry season, and apportioned the BC sources, including in the form of fossil fuel (e.g., vehicle emissions) and biomass fuel (e.g., industrial emissions). METHODS The new seven-channel aethalometer model (AE-33), PM2.5, and meteorological data were collected in the dry season (October-May) from 2019 to 2020, to quantify BC emissions in urban Shenzhen. Explored the source allocation of BC based on Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model. RESULTS We revealed that the mean BC concentration was 2672 ± 1506 ng/m3 in the dry season, with values of 4062 ± 1182 ng/m3, 2519 ± 1568 ng/m3, and 1900 ± 776 ng/m3 in autumn, winter, and spring, respectively. Additionally, we found that fossil fuels have higher contributions to BC concentrations (86.3% to 86.8% in autumn and spring) in the dry season than biomass fuels (16% to 20% in autumn, spring and winter), which is different from Beijing, Nanjing and other large economic zones in China. The diurnal variation in BC and the contribution of fossil fuels indicate that there is a significantly greater increase in BC during peak traffic hours in urban Shenzhen than in other cities. Finally, meteorological parameters and PM2.5 data provided supporting evidence that BC is sourced mainly from local vehicle emissions and industry-related combustion in the western and northeastern/southeastern parts of the study area. CONCLUSION This study showed that the concentration of BC is lower than other regions, and the source allocation is mainly local fossil fuels (vehicle emission, etc.). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-022-00793-3.
Collapse
Affiliation(s)
- Wenqian Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520 China
| | - Xiaoyi Cao
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Haofan Ran
- College of Resources and Environment Sciences, Xinjiang University, Urumqi, 830046 China
| | - Ting Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Bohan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Xuan Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
4
|
Zhou Q, Cheng C, Yang S, Yuan M, Meng J, Gong H, Zhong Q, Zhang Y, Xie Y, Zhou Z, Li M. Enhanced mixing state of black carbon with nitrate in single particles during haze periods in Zhengzhou, China. J Environ Sci (China) 2022; 111:185-196. [PMID: 34949348 DOI: 10.1016/j.jes.2021.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/14/2023]
Abstract
Black carbon (BC) plays an important role in air quality and climate change, which is closely associated with its mixing state and chemical compositions. In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer (SPAMS) in March 2018 in Zhengzhou, China. The BC-containing particles accounted for 61.4% of total detected ambient single particles and were classified into five types including BC-nitrate (BC-N, 52.3%) as the most abundant species, followed by BC-nitrate-sulfate (BC-NS, 22.4%), BCOC (16.8%), BC-fresh (BC-F, 4.5%) and BC-sulfate particles (BC-S, 4.0%). With enhancement of the ambient nitrate concentration, the relative peak area (RPA) of nitrate in BC-N and BCNS particles both increased, yet only the number fraction (Nf) of BCN particles increased while the Nf of BC-NS particles decreased, suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration. In addition, the Nf of BC-N decreased from 65.3% to 28.4% as the absorbing Ångström exponents (AAE) of eBC increased from 0.75 to 1.45, which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles. The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM2.5, which also influenced the optical properties of aged BC particles.
Collapse
Affiliation(s)
- Qianni Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China; School of Environment and Planning, Liaocheng University, Liaocheng 252000, China.
| | - Suxia Yang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Institute for Environment and Climate Research, Jinan University, Guangzhou 510632, China
| | - Minghao Yuan
- Zhengzhou Environmental Protection Monitoring Center Station, Zhengzhou 450007, China
| | - Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Haifeng Gong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Qien Zhong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yao Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yutong Xie
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| |
Collapse
|
5
|
Chronic real-time particulate matter exposure causes rat pulmonary arteriole hyperresponsiveness and remodeling: The role of ET BR-ERK1/2 signaling. Toxicol Appl Pharmacol 2020; 403:115154. [PMID: 32710959 DOI: 10.1016/j.taap.2020.115154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023]
Abstract
Exposure to air pollution is associated with the incidence of respiratory diseases. The present study evaluated the pulmonary vascular system injury by chronic real-time particulate matter (PM10) exposure and investigated the underlying mechanisms. Rats were exposed to PM10 or filtered air for 2 to 4 months using a whole body exposure system, and intraperitoneally injected with the MEK1/2 inhibitor U0126. Right heart catheterization and myography were performed to detect lung function and pulmonary vascular reactivity, respectively. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay and histological analyses were used to detect the effects and mechanisms by which PM10 exposure-induced pulmonary vascular dysfunction. Functional experiment results showed that PM10 exposure increased the pulmonary artery pressure of rats and caused endothelin B receptor (ETBR)-mediated pulmonary arteriole hyperreactivity. U0126 significantly rescued these pathological changes. PM10 exposure upregulated the contractile ETBR of pulmonary arteriolar smooth muscle, and damaged pulmonary artery endothelial cells to induce the release of more endothelin 1 (ET-1). The upregulated ETBR bound to increased ET-1 induced pulmonary arteriolar hyperresponsiveness and remodeling. U0126 inhibited the PM10 exposure-induced upregulation of ETBR in pulmonary arteriole, ETBR-mediated pulmonary arterial hyperresponsiveness and vascular remodeling. In conclusion, chronic real-time particulate matter exposure can activate the ERK1/2 signaling, thereby inducing the upregulation of contractile ETBR in pulmonary arteriole, which may be involved in pulmonary arteriole hyperresponsiveness and remodeling in rats. These findings provide new mechanistic evidence of PM10 exposure-induced respiratory diseases, and a new possible target for treatment.
Collapse
|