1
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Yamamoto-Furusho JK, Parra-Holguín NN, Juliao-Baños F, Puentes F, López R, Bosques-Padilla F, Torres EA, Nieves-Jimenéz H, Veitia-Velásquez GR, Jara-Alba ML, Bautista S, Piñol-Jimenez FN, Salgado-Rosado P, Villa-Ovalles KC, Abreu-Martinez YA, Borges Z, Davila-Bedoya S, Otoya-Moreno G, Iadé-Vergara B. Clinical differentiation of inflammatory bowel disease (IBD) in Latin America and the Caribbean. Medicine (Baltimore) 2022; 101:e28624. [PMID: 35060539 PMCID: PMC8772634 DOI: 10.1097/md.0000000000028624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The aim of the present study was to describe the epidemiological and clinical characteristics of inflammatory bowel disease (IBD), including medical and surgical treatments, in several countries in Latin America and the Caribbean.IBD is recognized as a global health problem because its incidence and prevalence have increased significantly over the last few years.This multicenter retrospective cohort study included 4714 patients with IBD diagnosed from 9 countries in Latin America and the Caribbean: Colombia, Cuba, Dominican Republic, Ecuador, Mexico, Peru, Puerto Rico, Uruguay, and Venezuela.Crohn disease (CD) was more frequent in Puerto Rico (71.9%), the Dominican Republic (61.0%), and Peru (53.1%). Ulcerative colitis was more frequent in Colombia (78.6%), Venezuela (78.2%), Mexico (75.5%), Cuba (69.9%), Ecuador (64.1%), and Uruguay (60.9%). The following clinical characteristics were more frequent in the Caribbean: penetrating behavior in CD, steroid dependence, steroid resistance, intolerance to thiopurines, extraintestinal manifestations, surgeries, hospitalizations due to IBD, and family history of IBD. The factors associated with the use of biological therapy were pancolitis in ulcerative colitis, penetrating behavior in CD, steroid resistance and dependence, presence of extraintestinal manifestations, and the need for surgery.This study from Latin America and the Caribbean demonstrated the different epidemiological and clinical characteristics of IBD.
Collapse
Affiliation(s)
- Jesús K. Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Gastroenterology Department, National Institute of Medical Science and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Norma N. Parra-Holguín
- Inflammatory Bowel Disease Clinic, Gastroenterology Department, National Institute of Medical Science and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Francisco Bosques-Padilla
- Department of Gastroenterology, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | - Maria L. Jara-Alba
- Hospital Dr. Teodoro Maldonado Carbo - Instituto Ecuatoriano de Seguridad Social (IESS), Guayaquil, Ecuador
| | - Sócrates Bautista
- Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina (CEDIMAT) Gastroenterology Center, Santo Domingo, Dominican Republic
| | | | - Pablo Salgado-Rosado
- Hospital Dr. Teodoro Maldonado Carbo - Instituto Ecuatoriano de Seguridad Social (IESS), Guayaquil, Ecuador
| | - Keyla C. Villa-Ovalles
- Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina (CEDIMAT) Gastroenterology Center, Santo Domingo, Dominican Republic
| | - Yudelka A. Abreu-Martinez
- Regional University Hospital José María Cabral y Baez, Santiago de los Caballeros, Dominican Republic
| | - Zunilda Borges
- Regional University Hospital José María Cabral y Baez, Santiago de los Caballeros, Dominican Republic
| | | | | | - Beatriz Iadé-Vergara
- Centro de Asistencia del Sindicato Médico del Uruguay (CASMU) Cooperativa de Servicios Médicos (COSEM), Uruguay
| |
Collapse
|
3
|
Antunes JC, Seabra CL, Domingues JM, Teixeira MO, Nunes C, Costa-Lima SA, Homem NC, Reis S, Amorim MTP, Felgueiras HP. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. NANOMATERIALS 2021; 11:nano11082035. [PMID: 34443866 PMCID: PMC8401460 DOI: 10.3390/nano11082035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of disabling, destructive and incurable immune-mediated inflammatory diseases comprising Crohn’s disease (CD) and ulcerative colitis (UC), disorders that are highly prevalent worldwide and demand a large investment in healthcare. A persistent inflammatory state enables the dysfunction and destruction of healthy tissue, hindering the initiation and endurance of wound healing. Current treatments are ineffective at counteracting disease progression. Further, increased risk of serious side effects, other comorbidities and/or opportunistic infections highlight the need for effective treatment options. Gut microbiota, the key to preserving a healthy state, may, alternatively, increase a patient’s susceptibility to IBD onset and development given a relevant bacterial dysbiosis. Hence, the main goal of this review is to showcase the main conventional and emerging therapies for IBD, including microbiota-inspired untargeted and targeted approaches (such as phage therapy) to infection control. Special recognition is given to existing targeted strategies with biologics (via monoclonal antibodies, small molecules and nucleic acids) and stimuli-responsive (pH-, enzyme- and reactive oxygen species-triggered release), polymer-based nanomedicine that is specifically directed towards the regulation of inflammation overload (with some nanosystems additionally functionalized with carbohydrates or peptides directed towards M1-macrophages). The overall goal is to restore gut balance and decrease IBD’s societal impact.
Collapse
Affiliation(s)
- Joana Costa Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
- Correspondence: ; Tel.: +351-253-510-289
| | - Catarina Leal Seabra
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Joana Margarida Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Marta Oliveira Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Cláudia Nunes
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Sofia Antunes Costa-Lima
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Natália Cândido Homem
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Salette Reis
- Laboratório Associado para a Química Verde (LAQV), Network of Chemistry and Technology (REQUIMTE), Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (C.L.S.); (C.N.); (S.A.C.-L.); (S.R.)
| | - Maria Teresa Pessoa Amorim
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| | - Helena Prado Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (J.M.D.); (M.O.T.); (N.C.H.); (M.T.P.A.); (H.P.F.)
| |
Collapse
|
4
|
Linares R, Fernández MF, Gutiérrez A, García-Villalba R, Suárez B, Zapater P, Martínez-Blázquez JA, Caparrós E, Tomás-Barberán FA, Francés R. Endocrine disruption in Crohn's disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products. FASEB J 2021; 35:e21697. [PMID: 34085740 DOI: 10.1096/fj.202100481r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The relevance of environmental triggers in Crohn's disease remains poorly explored, despite the well-known association between industrialization and disease onset/progression. We have aimed at evaluating the influence of endocrine disrupting chemicals in CD patients. We performed a prospective observational study on consecutive patients diagnosed of CD. Serum levels of endocrine disruptors, short-chain fatty acids, tryptophan and cytokines were measured. Bacterial-DNA and serum endotoxin levels were also evaluated. Gene expression of ER-α, ER-β and GPER was measured in PBMCs. All patients were genotyped for NOD2 and ATG16L1 polymorphisms. A series of 200 CD patients (140 in remission, 60 with active disease) was included in the study. Bisphenol A was significantly higher in patients with active disease versus remission and in colonic versus ileal disease. GPER was significantly increased in active patients and correlated with BPA levels. BPA was significantly increased in patients with bacterial-DNA and correlated with serum endotoxin levels, (r = 0.417; P = .003). Serum butyrate and tryptophan levels were significantly lower in patients with bacterial-DNA and an inverse relationship was present between them and BPA levels (r = -0.491; P = .001) (r = -0.611; P = .001). Serum BPA levels correlated with IL-23 (r = 0.807; P = .001) and IL-17A (r = 0.743; P = .001). The multivariate analysis revealed an independent significant contribution of BPA and bacterial-DNA to serum levels of IL-23 and IL-17A. In conclusion, bisphenol A significantly affects systemic inflammatory response in CD patients with gut barrier disruption and dysbiotic microbiota secretory products in blood. These results provide evidence of an endocrine disruptor playing an actual pathogenic role on CD.
Collapse
Affiliation(s)
- Raquel Linares
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mariana F Fernández
- Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain.,CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Gutiérrez
- IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Beatriz Suárez
- Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain.,CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Zapater
- IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | - Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain.,IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | | | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain.,IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Bastaki SMA, Amir N, Adeghate E, Ojha S. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem 2021; 476:3497-3512. [PMID: 33999335 DOI: 10.1007/s11010-021-04094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the most important therapeutic strategies to keep inflammatory bowel diseases (IBD) such as ulcerative colitis disease in remission. It is imperative to investigate naturally occuring plant-derived dietary phytochemicals that are receiving attention for their therapeutic benefits to overcome the debilitating conditions of IBD. In the present study, the effect of nerolidol (NRD), a monocyclic sesquiterpene found in German Chamomile tea, was investigated in acetic acid-induced colitis model in Wistar rats. NRD was orally administered at a dose of 50 mg/kg/day either for 3 days before or 30 min after induction of IBD for 7 days, after intrarectal administration of acetic acid. The body weight, macroscopic, and microscopic analyses of the colon in different experimental groups were observed on days 0, 2, 4, and 7. Acetic acid caused significant reduction in body weight and induced macroscopic and microscopic ulcer along with a significant decline of antioxidants, concomitant to increased malondialdehyde (MDA), a marker of lipid peroxidation, and myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with NRD significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. Acetic acid also induced the release of pro-inflammatory cytokines and increased calprotectin, released by neutrophils under inflammatory conditions. NRD treatment significantly reduced calprotectin and pro-inflammatory cytokines. NRD treatment showed potential to improve disease activity and inhibit oxidative stress, lipid peroxidation, and inflammation along with histological preservation of the colon tissues.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|