1
|
Xu Y, Wang Z, Pei C, Wu C, Huang B, Cheng C, Zhou Z, Li M. Single particle mass spectral signatures from on-road and non-road vehicle exhaust particles and their application in refined source apportionment using deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172822. [PMID: 38688364 DOI: 10.1016/j.scitotenv.2024.172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
With advances in vehicle emission control technology, updating source profiles to meet the current requirements of source apportionment has become increasingly crucial. In this study, on-road and non-road vehicle particles were collected, and then the chemical compositions of individual particles were analyzed using single particle aerosol mass spectrometry. The data were grouped using an adaptive resonance theory neural network to identify signatures and establish a mass spectral database of mobile sources. In addition, a deep learning-based model (DeepAerosolClassifier) for classifying aerosol particles was established. The objective of this model was to accomplish source apportionment. During the training process, the model achieved an accuracy of 98.49 % for the validation set and an accuracy of 93.36 % for the testing set. Regarding the model interpretation, ideal spectra were generated using the model, verifying its accurate recognition of the characteristic patterns in the mass spectra. In a practical application, the model performed hourly source apportionment at three specific field monitoring sites. The effectiveness of the model in field measurement was validated by combining traffic flow and spatial information with the model results. Compared with other machine learning methods, our model achieved highly automated source apportionment while eliminating the need for feature selection, and it enables end-to-end operation. Thus, in the future, it can be applied in refined and online source apportionment of particulate matter.
Collapse
Affiliation(s)
- Yongjiang Xu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-, Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zaihua Wang
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Chenglei Pei
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou 510030, China
| | - Cheng Wu
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-, Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Bo Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, Guangdong, China
| | - Chunlei Cheng
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-, Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhen Zhou
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-, Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mei Li
- College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-, Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| |
Collapse
|
2
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
3
|
Nguyen TTN, Le TC, Sung YT, Cheng FY, Wen HC, Wu CH, Aggarwal SG, Tsai CJ. The influence of COVID-19 pandemic on PM 2.5 air quality in Northern Taiwan from Q1 2020 to Q2 2021. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118252. [PMID: 37247544 DOI: 10.1016/j.jenvman.2023.118252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The study aimed to investigate the PM2.5 variations in different periods of COVID-19 control measures in Northern Taiwan from Quarter 1 (Q1) 2020 to Quarter 2 (Q2) 2021. PM2.5 sources were classified based on long-range transport (LRT) or local pollution (LP) in three study periods: one China lockdown (P1), and two restrictions in Taiwan (P2 and P3). During P1 the average PM2.5 concentrations from LRT (LRT-PM2.5-P1) were higher at Fuguei background station by 27.9% and in the range of 4.9-24.3% at other inland stations compared to before P1. The PM2.5 from LRT/LP mix or pure LP (Mix/LP-PM2.5-P1) was also higher by 14.2-39.9%. This increase was due to higher secondary particle formation represented by the increase in secondary ions (SI) and organic matter in PM2.5-P1 with the largest proportion of 42.17% in PM2.5 from positive matrix factorization (PMF) analysis. A similar increasing trend of Mix/LP-PM2.5 was found in P2 when China was still locked down and Taiwan was under an early control period but the rapidly increasing infected cases were confirmed. The shift of transportation patterns from public to private to avoid virus infection explicated the high correlation of the increasing infected cases with the increasing PM2.5. In contrast, the decreasing trend of LP-PM2.5-P3 was observed in P3 with the PM2.5 biases of ∼45% at all the stations when China was not locked down but Taiwan implemented a semi-lockdown. The contribution of gasoline vehicle sources in PM2.5 was reduced from 20.3% before P3 to 10% in P3 by chemical signatures and source identification using PMF implying the strong impact of strict control measures on vehicle emissions. In summary, PM2.5 concentrations in Northern Taiwan were either increased (P1 and P2) or decreased (P3) during the COVID-19 pandemic depending on control measures, source patterns and meteorological conditions.
Collapse
Affiliation(s)
- Thi-Thuy-Nghiem Nguyen
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Thi-Cuc Le
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Yu-Ting Sung
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Fang-Yi Cheng
- Department of Atmospheric Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Huan-Cheng Wen
- Department of Environmental Protection, Taiwan Power Company, Taipei, 100208, Taiwan
| | - Cheng-Hung Wu
- Department of Environmental Protection, Taiwan Power Company, Taipei, 100208, Taiwan
| | - Shankar G Aggarwal
- Environmental Sciences & Biomedical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Pan W, Chen X, Duan X, Xue Y, Jia L. Particulate matter exposure at urban traffic intersection during haze episodes: A case study in Changsha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156006. [PMID: 35595146 DOI: 10.1016/j.scitotenv.2022.156006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Urban intersection has been identified as a major contributor to the total personal exposure and short-term high exposure of particulate matter (PM) in modern cities. The main aim of this study was to get a better understanding of the determinants of traffic-related PM temporal variations and personal exposure to PMs at a viaduct-covered intersection controlled by traffic signals during the winter haze episodes. A two-day field sampling campaign was conducted with a portable device during evening rush hour and measured the PMs in the 0.3-10 μm size range both on the surface crosswalk and underground passage. PM variations and related cumulative respiratory deposition dose (RDD) along two routes with six road crossing scenarios were estimated on a severe pollution day and a typical day for both adults and children, respectively. The PM concentration on the severe pollution day ranged 59.2-67.9 μg/m3 for PM1, 163.8-257.0 μg/m3 for PM2, and 258.2-469.1 μg/m3 for PM10, respectively, as compared to 47.9-57.9 μg/m3for PM1, 112.7-199.8 μg/m3 for PM2, and 151.0-301.0 μg/m3 for PM10 on the typical day, respectively. The variability could be explained largely by the built-up environment, traffic component, signal setting, and ventilation condition. Our data suggest that an appropriate setting of the traffic signal would help reduce the personal exposure dose on the surface crosswalk at urban intersections and the ventilation condition had a significant influence on local PM distributions inside the underground passage. Results here provide possible suggestions for the future design of a walkable city.
Collapse
Affiliation(s)
- Wei Pan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, PR China; School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, PR China; School of Information and Management, Guangxi Medical University, Nanning 530021, PR China.
| | - Xiaolu Chen
- School of Information and Management, Guangxi Medical University, Nanning 530021, PR China
| | - Xiaojun Duan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Yu Xue
- School of Physical Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Lisi Jia
- Department of Information and Electromechanical Engineering, Guangxi Agricultural Vocational University, Nanning 530007, PR China
| |
Collapse
|
5
|
Yu S, Zhou X, Hu P, Chen H, Shen F, Yu C, Meng H, Zhang Y, Wu Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128925. [PMID: 35460997 DOI: 10.1016/j.jhazmat.2022.128925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.
Collapse
Affiliation(s)
- Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuedong Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peiwen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haoxuan Chen
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhang W, Dong J, Lv H, Bai W, Lu H, Noack BR, Zhu Y, Yang Y. Microparticle Transport and Sedimentation in a Rhythmically Expanding Alveolar Chip. MICROMACHINES 2022; 13:mi13030485. [PMID: 35334776 PMCID: PMC8949128 DOI: 10.3390/mi13030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022]
Abstract
Understanding the mechanism of particle transport and sedimentation in pulmonary alveolus is important for deciphering the causes of respiratory diseases and helping the development of drug delivery. In this study, taking advantage of the microfluidic technique, an experimental platform was developed to study particle behavior in a rhythmically expanding alveolar chip for a sufficient number of cycles. The alveolar flow patterns at different generations were measured for two cases with the gravity direction parallel or vertical to the alveolar duct. Affected by both the vortex flow inside the alveoli and the shear flow in the duct simultaneously, it was observed that particles inside the alveoli either escaped from the inlet of the alveolar duct or stayed in the alveoli, revealing the irreversibility of particle transport in the alveoli. At the earlier acinar generations, particles were inclined to deposit on the distal alveolar wall. The settling rates of particles of different sizes in the alveoli were also compared. This study provides valuable data for understanding particle transport and sedimentation in the alveoli.
Collapse
Affiliation(s)
- Wei Zhang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Jun Dong
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Huimin Lv
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Weitao Bai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518112, China;
| | - Bernd R. Noack
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
| | - Yue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (W.Z.); (J.D.); (H.L.); (W.B.); (B.R.N.); (Y.Z.)
- Correspondence:
| |
Collapse
|
7
|
Shahne MZ, Arhami M, Hosseini V, El Haddad I. Particulate emissions of real-world light-duty gasoline vehicle fleet in Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118303. [PMID: 34626703 DOI: 10.1016/j.envpol.2021.118303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter cause profound adverse health effects in Iran. Road traffic is one of the main sources of particulate matter (PM) in urban areas, and has a large contribution in PM2.5 and organic carbon concentration, in Tehran, Iran. The composition of fine PM vehicle emission is poorly known, so this paper aims to determine the mixed fleet source profile by using the analysed data from the two internal stations and the emission factor for PM light-duty vehicles emission. Tunnels are ideal media for extraction vehicle source profile and emission factor, due to vehicles are the only source of pollutant in the urban tunnels. In this study, PM samples were collected simultaneously in two road tunnel stations and at a background site in Niyayesh tunnel in Tehran, Iran. The tunnel samples show a large contribution for some elements and ions, such as Fe (0.23 μg μg-1 OC), Al (0.02 μg μg-1 OC), Ca (0.055 μg μg-1 OC), SO4 (0.047 μg μg-1 OC), Docosane (0.0017 μg μg-1 OC), Triacontane (0.016 μg μg-1 OC), Anthracenedione (0.0003 μg μg-1 OC) and Benzo-perylene (0.0002 μg μg-1 OC). In overall, on-road gasoline vehicle fleets source profile extracted in this study is similar to composite profiles derived from roadside tunnel measurment performed in other countries during the last decades. The PM2.5 emission factor for Tehran's light-duty vehicle fleet has been extracted 16.23 mg km-1. vehicle-1and 0.09 g kg-1. The profile would be used for Chemical Mass Balance Model studies for Iran and other countries with a similar road traffic fleet mix. Also, it would be very suitable for use in emission inventories improvement. The results of this study can be used for choosing the best management strategies and provide comperhensive insight to fine PM traffic emission in Tehran.
Collapse
Affiliation(s)
| | | | - Vahid Hosseini
- School of Sustainble Eneregy Engineering, Simon Fraser University, Vancouver, BC, Canada
| | - Imad El Haddad
- Paul Scherrer Institute, Villigen PSI, Aargau, Switzerland
| |
Collapse
|
8
|
Liu P, Zhou H, Chun X, Wan Z, Liu T, Sun B, Wang J, Zhang W. Characteristics of fine carbonaceous aerosols in Wuhai, a resource-based city in Northern China:Insights from energy efficiency and population density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118368. [PMID: 34656676 DOI: 10.1016/j.envpol.2021.118368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
As one of the predominant compositions of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm), carbonaceous aerosols not only have adverse effects on air quality, but also can affect climate change. Although there are extensive recent studies on carbonaceous aerosols, comprehensive studies on their socioeconomic influencing factors in a resource-based city are relatively limited. In this study, the spatial-temporal variations of organic carbon (OC), elemental carbon (EC), and secondary organic carbon (SOC) were investigated in January, July, and October in 2015 and April in 2016 in Wuhai and its surrounding areas. The population distribution and industry layout have led to the uneven spatial-temporal distribution of carbonaceous aerosols. The concentrations of carbonaceous aerosols were higher in winter due to the unfavorable meteorology and the increased emissions from heating. The SOC is a significant contributor to OC in the cold season (52.0% for January). Primary carbonaceous aerosols pollution is higher in the industrial sites of resource-based cities, whereas the SOC makes a significant contribution in the residential sites. The results of backward-trajectory and concentration-weighted trajectory analysis suggest that the local emissions and short-range atmospheric transport from nearby areas have a significant impact on PM2.5 and carbonaceous aerosols. A strong correlation between population density and OC/EC ratio was found, indicating that the megacities with high population density have a higher SOC contribution than the resource-based cities. Resource-based cities are characterized by high level of primary OC emissions, whereas cities with high energy efficiency have a more significant SOC contribution. These results provide a more comprehensive understanding of carbonaceous aerosols in a resource-based city.
Collapse
Affiliation(s)
- Peng Liu
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Haijun Zhou
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Xi Chun
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Zhiqiang Wan
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Repair Engineering Laboratory of Wetland Eco-environment System, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Tao Liu
- Ecology and Environment Monitoring Center Station of Inner Mongolia, Hohhot, 010011, China
| | - Bing Sun
- Hohhot Ecology and Environment Monitoring Branch Station of Inner Mongolia, Hohhot, 010030, China
| | - Jingwen Wang
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Wenhui Zhang
- Products Quality Inspection and Research Institute of Inner Mongolia, Hohhot, 010070, China
| |
Collapse
|
9
|
Jia S, Zhang Q, Yang L, Sarkar S, Krishnan P, Mao J, Hang J, Chang M, Zhang Y, Wang X, Chen W. Deposition of ambient particles in the human respiratory system based on single particle analysis: A case study in the Pearl River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117056. [PMID: 33862340 DOI: 10.1016/j.envpol.2021.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
It is important to evaluate how ambient particles are deposited in the human respiratory system in view of the adverse effects they pose to human health. Traditional methods of investigating human exposure to ambient particles suffer from drawbacks related either to the lack of chemical information from particle number-based measurements or to the poor time resolution of mass-based measurements. To address these issues, in this study, human exposure to ambient particulate matter was investigated using single particle analysis, which provided chemical information with a high time resolution. Based on single particle measurements conducted in the Pearl River Delta, China, nine particle types were identified, and EC (elemental carbon) particles were determined to be the most dominant type of particle. In general, the submicron size mode was dominant in terms of the number concentration for all of the particle types, except for Na-rich and dust particles. On average, around 34% of particles were deposited in the human respiratory system with 13.9%, 7.9%, and 12.6% being distributed in the head, tracheobronchial, and pulmonary regions, respectively. The amount of Na-rich particles deposited was the highest, followed by EC. The overall deposition efficiencies of the Na-rich and dust particles were higher than those of the other particle types due to their higher efficiencies in the head region, which could be caused by the greater sedimentation and impaction rates of larger particles. In the head region, the Na-rich particles made the largest contribution (30.5%) due to their high deposition efficiency, whereas in the tracheobronchial and pulmonary regions, EC made the largest contribution due to its high concentration. In summary, the findings of this initial trial demonstrate the applicability of single particle analysis to the assessment of human exposure to ambient particles and its potential to support traditional methods of analysis.
Collapse
Affiliation(s)
- Shiguo Jia
- School of Atmospheric Sciences, & Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, 510275, PR China
| | - Qi Zhang
- School of Atmospheric Sciences, & Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China
| | - Liming Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore
| | - Sayantan Sarkar
- School of Engineering, Indian Institute of Technology (IIT), Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Padmaja Krishnan
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jingying Mao
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, PR China
| | - Jian Hang
- School of Atmospheric Sciences, & Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, 510275, PR China
| | - Ming Chang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, PR China
| | - Yiqiang Zhang
- South China Institute of Environmental Science, MEE, Guangzhou, 510530, PR China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, PR China
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
10
|
Liu Y, Li Y, Yuan Z, Wang H, Sha Q, Lou S, Liu Y, Hao Y, Duan L, Ye P, Zheng J, Yuan B, Shao M. Identification of two main origins of intermediate-volatility organic compound emissions from vehicles in China through two-phase simultaneous characterization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117020. [PMID: 33813191 DOI: 10.1016/j.envpol.2021.117020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Intermediate-volatility organic compounds (IVOCs) emitted from vehicles are generally in the gas phase but may partly partition into particle phase when measured under ambient temperature. To have a complete and accurate picture of IVOC emissions from vehicles, gas- and particle-phase IVOCs from a fleet of gasoline and diesel vehicles were simultaneously characterized by dynamometer testing in Guangzhou, China. The total IVOC emission factors of the diesel vehicles were approximately 16 times those of the gasoline vehicles, and IVOCs were mainly concentrated in the particle phase in the form of the unresolved complex mixture (UCM). The chemical compositions and volatility distributions of the gas-phase IVOCs differed much between gasoline and diesel vehicles, but were similar to those of their respective fuel content. This indicated that vehicle fuel is the main origin for the gas-phase IVOC emissions from vehicles. In comparison, the chemical compositions of the particle-phase IVOCs from gasoline and diesel vehicles were similar and close to lubricating oil content, implying that lubricating oil plays an important role in contributing to particle-phase IVOCs. The highest IVOC fraction in the particle phase occurred from B16-B18 volatility bins, overall accounting for more than half of the particle-phase IVOCs for both the gasoline and diesel vehicles. A conceptual model was developed to articulate the distributions of lubricating oil contents and their evaporation and nucleation/adsorption capabilities in the different volatility bins. The IVOCs-produced secondary organic aerosol (SOA) were 1.4-2.6 and 3.9-11.7 times POAs emitted from the gasoline and diesel vehicles, respectively. The tightening of emission standards had not effectively reduced IVOC emissions and the SOA production until the implementation of China VI emission standard. This underscores the importance of accelerating the promotion of the latest emission standard to alleviate pollution from vehicles in China.
Collapse
Affiliation(s)
- Yuanxiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Qing'e Sha
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yuehui Liu
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yuqi Hao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Lejun Duan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
11
|
One-Year Real-Time Measurement of Black Carbon in the Rural Area of Qingdao, Northeastern China: Seasonal Variations, Meteorological Effects, and the COVID-19 Case Analysis. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we report the results obtained from one year of real-time measurement (i.e., from December 2019 to November 2020) of atmospheric black carbon (BC) under a rural environment in Qingdao of Northeastern China. The annual average concentration of BC was 1.92 ± 1.89 μg m−3. The highest average concentration of BC was observed in winter (3.65 ± 2.66 μg m−3), followed by fall (1.73 ± 1.33 μg m−3), spring (1.53 ± 1.33 μg m−3), and summer (0.83 ± 0.56 μg m−3). A clear weekend effect was observed in winter, which was characterized by higher BC concentration (4.60 ± 2.86 μg m−3) during the weekend rather than that (3.22 ± 2.45 μg m−3) during weekdays. The influence of meteorological parameters, including surface horizontal wind speed, boundary layer height (BLH), and precipitation, on BC, was investigated. In particular, such BLH influence presented evidently seasonal dependence, while there was no significant seasonality for horizontal wind speed. These may reflect different roles of atmospheric vertical dilution on affecting BC in different seasons. The △BC/△CO ratio decreased with the increase of precipitation, indicative of the influence of below-cloud wet removal of BC, especially during summertime where rainfall events more frequently occurred than any of other seasons. The bivariate-polar-plot analysis showed that the high BC concentrations were mainly associated with low wind speed in all seasons, highlighting an important BC source originated from local emissions. By using concentration-weighted trajectory analysis, it was found that regional transports, especially from northeastern in winter, could not be negligible for contributing to BC pollution in rural Qingdao. In the coronavirus disease 2019 (COVID−19) case analysis, we observed an obvious increase in the BC/NO2 ratio during the COVID-19 lockdown, supporting the significant non-traffic source sector (such as residential coal combustion) for BC in rural Qingdao.
Collapse
|
12
|
Lu Z, Deng S, Gao C, Li G, Song H, Li J. Emission characteristics and ozone formation potentials of gaseous pollutants from in-use methanol-, CNG- and gasoline-fueled vehicles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:164. [PMID: 33675429 DOI: 10.1007/s10661-021-08951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Alternative-fueled vehicles have been introduced to solve the problem of the energy crisis and address air pollution. However, typical pollutants (e.g., methane and methanol) are emitted through combustion of the alternative fuel. In this study, the concentrations of regulated pollutants (CO, NO) and unregulated pollutants (CH4, methanol, formaldehyde, and 8 NMHC species) in the exhaust from methanol, CNG, and gasoline-fueled vehicles (MV, NGV, and GV) were measured systematically on a chassis dynamometer during an in-use vehicle driving cycle. The emission factors of these gaseous pollutants were calculated, and the ozone formation potential (OFP) of each ozone precursor measured in this work was evaluated with the MIR scale. The results showed that NO and NMHC species exhausted from the MV and NGV decreased significantly than that from the GV. However, the unburned pollutants exhausted from MV and NGV warrant attention. For the OFPs, CO was the largest contributor for all tested vehicles. Formaldehyde was ranked the second for the MV and NGV. Among the tested vehicles, the OFPs of NGV were the lowest. The results are helpful in quantitating analysis of the vehicle emissions and evaluating the impacts of alternative-fueled vehicles on atmospheric environment.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Chanjuan Gao
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- School of Resource and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 132002, China
| | - Guanghua Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Hui Song
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- School of Architectural Engineering, Chang'an University, Xi'an, 710064, China
| | - Jianghao Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
13
|
Zhang X, Zhu Z, Cao F, Tiwari S, Chen B. Source apportionment of absorption enhancement of black carbon in different environments of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142685. [PMID: 33049540 DOI: 10.1016/j.scitotenv.2020.142685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Black carbon (BC) is an important pollutant for both air quality and earth's radiation balance because of its strong absorption enhancement. The enhanced light absorption of BC caused by other pollutants is one of the most important sources of uncertainty in global radiative forcing. The light absorption of BC is highly dependent on the emission source and very few studies have been carried out for the source apportionment of BC absorption enhancement. Thus, with this objective, continuous measurements of particulate matter (PM2.5) were performed at three different sites: a traffic site in Nanjing, an urban site in Jinan, and a rural site in Yucheng; the BC absorption enhancement and its source contributions were determined. The mass absorption cross-section (MAC) of BC aerosols was reduced after the removal of the coating material. The maximum MAC enhancement (EMAC) was found to be 2.25 ± 0.5 at the rural site, followed by 2.07 ± 0.7 at the urban site and 1.7 ± 0.6 at the traffic site, suggesting an approximately double enhancement in BC absorption due to different coating materials. The source apportionment of absorption enhancement of BC analysis using the positive matrix factorization model suggests five major emission sources. Among them, secondary sources were the main source of EMAC at all the three sites with a percentage contribution of 43.4% (rural site), 34.6% (traffic site), and 31% (urban site). However, other emission sources, such as biomass burning (21.1% at rural site) and vehicular emissions (33.8% at traffic site) also had a significant contribution to EMAC, suggesting that there could be large variations in BC absorption enhancement due to differences in emission sources together with aerosol aging processes.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhejing Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Feiyan Cao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shani Tiwari
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bing Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| |
Collapse
|
14
|
He HD, Gao HO. Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115931. [PMID: 33187848 DOI: 10.1016/j.envpol.2020.115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 05/24/2023]
Abstract
Exposure to elevated particulate matter (PM) pollution is of great concern to both the general public and air quality management agencies. At urban traffic intersections, for example, pedestrians are often at a higher risk of exposure to near-source PM pollution from traffic while waiting on the roadside or while walking in the crosswalk. This study offers an in-depth investigation of pedestrian exposure to PM pollution at an urban traffic intersection. Fixed-site measurements near an urban intersection were conducted to examine the variations in particles of various sizes through traffic signal cycles. This process aids in the identification of major PM dispersion patterns on the roadside. In addition, mobile measurements of pedestrian exposure to PM were conducted across six time intervals that correspond to different segments of a pedestrian's journey when passing through the intersection. Measurement results are used to estimate and compare the cumulative deposited doses of PM by size categories and journey segments for pedestrians at an intersection. Furthermore, comparisons of pedestrian exposure to PM on a sunny day and a cloudy day were analyzed. The results indicate the importance of reducing PM pollution at intersections and provide policymakers with a foundation for possible measures to reduce pedestrian PM exposure at urban traffic intersections.
Collapse
Affiliation(s)
- Hong-di He
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA; Center for Transportation, Environment, and Community Health, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|