1
|
Madesh S, Sudhakaran G, Murugan R, Almutairi MH, Almutairi BO, Kathiravan MK, Arockiaraj J. Parental (F0) exposure to Cadmium and Ketoprofen induces developmental deformities in offspring (F1): A transgenerational toxicity assessment in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175319. [PMID: 39117212 DOI: 10.1016/j.scitotenv.2024.175319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
In the aquatic environment, the primary pollutants of heavy metals and pharmaceuticals always occur in coexisting forms, and the research about combined impacts remains unclear, especially transgenerational effects. Cadmium (Cd) is a heavy metal that can damage the endocrine reproduction systems and cause thyroid dysfunction in fish. Meanwhile, ketoprofen (KPF) is a nonsteroidal anti-inflammatory drug (NSAID) that can cause neurobehavioral damage and physiological impairment. However, to our knowledge, the combined exposure of Cd and KPF in transgenerational studies has not been reported. In this investigation, sexually mature zebrafish were subjected to isolated exposure and combined exposure to Cd (10 μg/L) and KPF (10 and 100 μg/L) at environmentally relevant concentrations for 42 days. In this background, breeding capacity, chemical accumulation rate in gonads, and tissue morphologies are investigated in parental fish. This is followed by examining the malformation rate, inflammation rate, and gene transcription in the F1 offspring. Our results indicate that combined exposure of Cd and KPF to the parental fish could increase the chemical accumulation rate and tissue damage in the gonads of fish and significantly reduce the breeding ability. Furthermore, these negative impacts were transmitted to its produced F1 embryos, reflected by hatching rate, body deformities, and thyroid axis-related gene transcription. These findings provide further insights into the harm posed by Cd in the presence of KPF to the aquatic ecosystems.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Madesh S, Sudhakaran G, Ramamurthy K, Kathiravan MK, Almutairi MH, Almutairi BO, Arokiyaraj S, Guru A, Arockiaraj J. Cadmium and ketoprofen accumulation influences aquatic ecosystem demonstrated using in-vivo zebrafish model. Drug Chem Toxicol 2024:1-16. [PMID: 38910278 DOI: 10.1080/01480545.2024.2364240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arbia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arbia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
3
|
Ramírez-Morales D, Rojas-Jiménez K, Castro-Gutiérrez V, Rodríguez-Saravia S, Vaglio-Garro A, Araya-Valverde E, Rodríguez-Rodríguez CE. Ecotoxicological effects of ketoprofen and fluoxetine and their mixture in an aquatic microcosm. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106924. [PMID: 38678909 DOI: 10.1016/j.aquatox.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
The effects of fluoxetine (antidepressant) and ketoprofen (analgesic) on aquatic ecosystems are largely unknown, particularly as a mixture. This work aimed at determining the effect of sublethal concentrations of both compounds individually (0.050 mg/L) and their mixture (0.025 mg/L each) on aquatic communities at a microcosm scale for a period of 14 d. Several physicochemical parameters were monitored to estimate functional alterations in the ecosystem, while model organisms (Daphnia magna, Lemna sp., Raphidocelis subcapitata) and the sequencing of 16S/18S rRNA genes permitted to determine effects on specific populations and changes in community composition, respectively. Disturbances were more clearly observed after 14 d, and overall, the microcosms containing fluoxetine (alone or in combination with ketoprofen) produced larger alterations on most physicochemical and biological variables, compared to the microcosm containing only ketoprofen, which suffered less severe changes. Differences in nitrogen species suggest alterations in the N-cycle due to the presence of fluoxetine; similarly, all pharmaceutical-containing systems decreased the brood rate of D. magna, while individual compounds inhibited the growth of Lemna sp. No clear trends were observed regarding R. subcapitata, as indirectly determined by chlorophyll quantification. The structure of micro-eukaryotic communities was altered in the fluoxetine-containing systems, whereas the structure of bacterial communities was affected to a greater extent by the mixture. The disruptions to the equilibrium of the microcosm demonstrate the ecological risk these compounds pose to aquatic ecosystems.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | | | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Annette Vaglio-Garro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Emanuel Araya-Valverde
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
4
|
Irfan M, Mészáros I, Szabó S, Oláh V. Comparative Phytotoxicity of Metallic Elements on Duckweed Lemna gibba L. Using Growth- and Chlorophyll Fluorescence Induction-Based Endpoints. PLANTS (BASEL, SWITZERLAND) 2024; 13:215. [PMID: 38256768 PMCID: PMC10821045 DOI: 10.3390/plants13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
In this study, we exposed a commonly used duckweed species-Lemna gibba L.-to twelve environmentally relevant metals and metalloids under laboratory conditions. The phytotoxic effects were evaluated in a multi-well-plate-based experimental setup by means of the chlorophyll fluorescence imaging method. This technique allowed the simultaneous measuring of the growth and photosynthetic parameters in the same samples. The inhibition of relative growth rates (based on frond number and area) and photochemical efficiency (Fv/Fo and Y(II)) were both calculated from the obtained chlorophyll fluorescence images. In the applied test system, growth-inhibition-based phytotoxicity endpoints proved to be more sensitive than chlorophyll-fluorescence-based ones. Frond area growth inhibition was the most responsive parameter with a median EC50 of 1.75 mg L-1, while Fv/Fo, the more responsive chlorophyll-fluorescence-based endpoint, resulted in a 5.34 mg L-1 median EC50 for the tested metals. Ag (EC50 0.005-1.27 mg L-1), Hg (EC50 0.24-4.87 mg L-1) and Cu (EC50 0.37-1.86 mg L-1) were the most toxic elements among the tested ones, while As(V) (EC50 47.15-132.18 mg L-1), Cr(III) (EC50 6.22-19.92 mg L-1), Se(VI) (EC50 1.73-10.39 mg L-1) and Zn (EC50 3.88-350.56 mg L-1) were the least toxic ones. The results highlighted that multi-well-plate-based duckweed phytotoxicity assays may reduce space, time and sample volume requirements compared to the standard duckweed growth inhibition tests. These benefits, however, come with lowered test sensitivity. Our multi-well-plate-based test setup resulted in considerably higher median EC50 (3.21 mg L-1) for frond-number-based growth inhibition than the 0.683 mg L-1 median EC50 derived from corresponding data from the literature with standardized Lemna-tests. Under strong acute phytotoxicity, frond parts with impaired photochemical functionality may become undetectable by chlorophyll fluorometers. Consequently, the plant parts that are still detectable display a virtually higher average photosynthetic performance, leading to an underestimation of phytotoxicity. Nevertheless, multi-well-plate-based duckweed phytotoxicity assays, combined with chlorophyll fluorescence imaging, offer definite advantages in the rapid screening of large sample series or multiple species/clones. As chlorophyll fluorescence images provide information both on the photochemical performance of the test plants and their morphology, a joint analysis of the two endpoint groups is recommended in multi-well-plate-based duckweed phytotoxicity assays to maximize the information gained from the tests.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Sándor Szabó
- Department of Biology, Institute of Environmental Sciences, University of Nyiregyhaza, H-4401 Nyiregyhaza, Hungary
| | - Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| |
Collapse
|
5
|
Embarez DH, Razek ASA, Basalious EB, Mahmoud M, Hamdy NM. Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity. J Genet Eng Biotechnol 2023; 21:171. [PMID: 38112983 PMCID: PMC10730784 DOI: 10.1186/s43141-023-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Valley, Egypt-water, sediment, and sand samples, taxonomically characterized using a transmission electron microscope (TEM). Genotypic identification, based on 16S rRNA gene sequence analysis followed by BLAST alignment, were deposited on the NCBI as 2 novel strains https://www.ncbi.nlm.nih.gov/nuccore/OM665324 and https://www.ncbi.nlm.nih.gov/nuccore/OM665325 . The phylogenetic tree was constructed. Acetaminophen secondary or intermediate product's chemical structure was identified by GC/LC MS. Some selected acetaminophen secondary-product extracts and derived compounds were examined against a panel of test micro-organisms and fortunately showed a good anti-microbial effect. In silico chemo-informatics Swiss ADMET evaluation was used in the selected bio-degradation extracts for absorption (gastric), distribution (to CNS), metabolism (hepatic), excretion (renal), and finally not toxic, being non-mutagenic/teratogenic or genotoxic, virtually. Moreover, in vitro cytotoxic activity of these selected bio-degradation secondary products was examined against HepG2 and MCF7 cancer cell lines, where M33 and RS2 extract effects on acetaminophen/paracetamol bio-degradation products were safe, with higher IC50 on HepG2 and MCF7 than the acetaminophen/paracetamol IC50 of 108.5 μg/ml. Moreover, an in vivo oral acute single-dose toxicity experiment was conducted, to confirm these in vitro and in silico lower toxicity (better safety) than acetaminophen/paracetamol.
Collapse
Affiliation(s)
- Donia H Embarez
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Ahmed S Abdel Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Al Kasr El-Aini, Egypt
| | - Magdi Mahmoud
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt.
| |
Collapse
|
6
|
Wang H, Li Z, Shen L, Zhang P, Lin Y, Huang X, Du S, Liu H. Ketoprofen exposure perturbs nitrogen assimilation and ATP synthesis in rice roots: An integrated metabolome and microbiome analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122485. [PMID: 37659631 DOI: 10.1016/j.envpol.2023.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ketoprofen, a commonly used non-steroidal anti-inflammatory drug (NSAID), can enter farmland environments via sewage irrigation and manure application and is toxic to plants. However, there have been relatively few studies on the association of ketoprofen with nitrogen (N) assimilation and metabolic responses in plants. Accordingly, the goal of this study was to investigate the effects of ketoprofen on ATP synthesis and N assimilation in rice roots. The results showed that with increasing ketoprofen concentration, root vitality, respiration rate, ATP content, and H+-ATPase activity decreased and plasma membrane permeability increased. The expressions of OSA9, a family III H+-ATPase gene, and OSA6 and OSA10, family IV genes, were upregulated, indicating a response of the roots to ketoprofen. Nitrate, ammonium, and free amino acids content decreased with increased ketoprofen. The levels of enzymes involved in N metabolism, namely nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase, also decreased under ketoprofen treatment. Principal component analysis revealed that ketoprofen treatment can significantly affect energy synthesis and nitrogen assimilation in rice roots, while these effects can be alleviated by the antioxidant response. Most of the metabolite contents increased, including amino acids, carbohydrates, and secondary metabolites. Key metabolic pathways, namely substance synthesis and energy metabolism, were found to be disrupted. Microbiome analysis showed that community diversity and richness of rice root microorganisms in solution increased with increasing levels of ketoprofen treatment, and the microbial community structure and metabolic pathways significantly changed. The results of this study provides new insights into the response of rice roots to ketoprofen.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
7
|
Wang N, Kang G, Hu G, Chen J, Qi D, Bi F, Chang N, Gao Z, Zhang S, Shen W. Spatiotemporal distribution and ecological risk assessment of pharmaceuticals and personal care products (PPCPs) from Luoma Lake, an important node of the South-to-North Water Diversion Project. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1330. [PMID: 37848742 DOI: 10.1007/s10661-023-11976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
PPCPs (pharmaceuticals and personal care products) are widely found in the environment and can be a risk to human and ecosystem health. In this study, spatiotemporal distribution, critical risk source identification and potential risks of 14 PPCPs found in water collected from sampling points in Luoma Lake and its inflowing rivers in two seasons in 2019 and 2020 were investigated. The PPCPs concentrations ranged from 27.64 ng·L-1 to 613.08 ng·L-1 in December 2019, and from 16.67 ng·L-1 to 3287.41 ng·L-1 in April 2020. Ketoprofen (KPF) dominated the PPCPs with mean concentrations of 125.85 ng·L-1 and 640.26 ng·L-1, respectively. Analysis of sources showed that the pollution in Luoma Lake mostly originated from sewage treatment plant effluents, inflowing rivers and domestic wastewater. Among them, the inflowing rivers contributed the most (82.95%) to the concentration of total PPCPs. The results of ecological risk assessment showed that there was a moderate risk (0.1 < RQs < 1) from carbamazepine (CBZ) in December 2019 and a high risk (RQs > 1) from naproxen (NPX) in April 2020. The results of human risk assessment found that NPX posed a high risk to infant health, and we found that NPX was associated with 83 diseases according to Comparative Toxicogenomics Database. NPX was identified as a substance requiring major attention. The results provide an understanding of the concentrations and ecological risks of PPCPs in Luoma Lake. We believe the data will support environmental departments to develop management strategies and prevent PPCPs pollution.
Collapse
Affiliation(s)
- Ning Wang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guanjiu Hu
- Jiangsu Environmental Monitoring, Nanjing, 210036, China
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Nanjing, 210019, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Qi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Fengzhi Bi
- Jiangsu Environmental Monitoring, Nanjing, 210036, China
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Nanjing, 210019, China
| | - Ning Chang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Zhanqi Gao
- Jiangsu Environmental Monitoring, Nanjing, 210036, China.
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Nanjing, 210019, China.
| | - Shenghu Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Weitao Shen
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Roveri V, Lopes Guimarães L, Correia AT. Prioritizing pharmaceutically active compounds (PhACs) based on occurrence-persistency-mobility-toxicity (OPMT) criteria: an application to the Brazilian scenario. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1023-1039. [PMID: 38047444 DOI: 10.1080/1062936x.2023.2287516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
A study of Quantitative Structure Activity Relationship (QSAR) was performed to assess the possible adverse effects of 25 pharmaceuticals commonly found in the Brazilian water compartments and to establish a ranking of environmental concern. The occurrence (O), the persistence (P), the mobility (M), and the toxicity (T) of these compounds in the Brazilian drinking water reservoirs were evaluated. Moreover, to verify the predicted OPMT dataset outcomes, a quality index (QI) was also developed and applied. The main results showed that: (i) after in silico predictions through VEGA QSAR, 19 from 25 pharmaceuticals consumed in Brazil were classified as persistent; (ii) moreover, after in silico predictions through OPERA QSAR, 15 among those 19 compounds considered persistent, were also classified as mobile or very mobile. On the other hand, the results of toxicity indicate that only 9 pharmaceuticals were classified with the highest toxicity level. Ultimately, the QI of 7 from 25 pharmaceuticals were categorized as 'optimal'; 15 pharmaceuticals were categorized as 'good'; and only 3 pharmaceuticals were categorized as 'regular'. Therefore, based on the QI criteria used, it is possible to assume that this OPMT prediction dataset had a good reliability. Efforts to reduce emissions of OPMT-pharmaceuticals in Brazilian drinking water reservoirs are encouraged.
Collapse
Affiliation(s)
- V Roveri
- Departamento de Gestão Ambiental, Universidade Metropolitana de Santos (UNIMES), Santos, Brazil
- Laboratório de EcoFisiologia, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Matosinhos, Portugal
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Santos, Brazil
| | - L Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Santos, Brazil
| | - A T Correia
- Laboratório de EcoFisiologia, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Matosinhos, Portugal
- Escola das Ciências da Vida e do Ambiente da Universidade de Trás-os-Montes e Alto Douro (UTAD-ECVA), Vila Real, Portugal
- Departamento de Ciências da Vida, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
9
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
10
|
Michalaki A, Grintzalis K. Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia magna. TOXICS 2023; 11:320. [PMID: 37112547 PMCID: PMC10145367 DOI: 10.3390/toxics11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Pharmaceuticals pose a great threat to organisms inhabiting the aquatic environment. Non-steroidal anti-inflammatory drugs (NSAIDs) are major pharmaceutical pollutants with a significant presence in freshwater ecosystems. In this study, the impact of indomethacin and ibuprofen, two of the most commonly prescribed NSAIDs, was assessed on Daphnia magna. Toxicity was assessed as the immobilization of animals and used to determine non-lethal exposure concentrations. Feeding was assessed as a phenotypic endpoint and key enzymes were used as molecular endpoints of physiology. Feeding was decreased in mixture exposures for five-day-old daphnids and neonates. Furthermore, animals were exposed to NSAIDs and their mixture in chronic and transgenerational scenarios revealing changes in key enzyme activities. Alkaline and acid phosphatases, lipase, peptidase, β-galactosidase, and glutathione-S-transferase were shown to have significant changes in the first generation at the first and third week of exposure, and these were enhanced in the second generation. On the other hand, the third recovery generation did not exhibit these changes, and animals were able to recover from the induced changes and revert back to the control levels. Overall, our study points towards transgenerational exposures as more impactful laboratory studies to understand pharmaceutical stressors with a combination of molecular and phenotypic markers of physiology.
Collapse
|
11
|
Jeyavani J, Sibiya A, Gopi N, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Riaz MN, Palaniappan B, Govindarajan M, Vaseeharan B. Ingestion and impacts of water-borne polypropylene microplastics on Daphnia similis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13483-13494. [PMID: 36136182 DOI: 10.1007/s11356-022-23013-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Polypropylene microplastics are the leading contaminant in aquatic environments, although research on their toxicity remains scarce. The proposed research focuses on the harmful consequences of acute exposure to polypropylene microplastics in Daphnia similis. This work converts widely available polypropylene bags into microplastics using xylene. FTIR findings demonstrated the lack of xylene residue in the produced polypropylene microplastic particles, which were spherical and ranged in size from 11.86 to 44.62 µm (FE-SEM). The results indicate that acute exposure to polypropylene microplastics causes immobility in D. similis. Ingestion of microplastics enhances the generation of reactive oxygen species (ROS), as shown by biochemical studies. Due to the production of free radicals in D. similis, the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and a non-antioxidant enzyme of reduced glutathione (GSH) and also oxidative stress effects in lipid (lipid peroxidation - LPO), protein (carbonyl protein - CP) were increased. Additionally, the amount of the neurotransmitter enzyme acetylcholinesterase (AChE) activity was decreased. These findings indicate that the accumulation of polypropylene microplastics in the bodies of filter-feeding organisms should aggravate toxicity in the freshwater environment.
Collapse
Affiliation(s)
- Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Balasubramanian Palaniappan
- Department of Clinical and Translational Science, Marshall University Joan C. Edwards School of Medicine, 1700 Byrd Biotech Science Center, Huntington, WV, 25755, USA
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, 608 002, Annamalai Nagar, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
12
|
Sha'aba RI, Chia MA, Gana YA, Alhassan AB, Gadzama IMK. The growth, biochemical composition, and antioxidant response of Microcystis and Chlorella are influenced by Ibuprofen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13118-13131. [PMID: 36123556 DOI: 10.1007/s11356-022-22837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Non-steroidal anti-inflammatory drugs like ibuprofen (IBU) are extensively used, causing substantial amounts to end up in aquatic ecosystems. Unfortunately, little research has been done on how these medications influence the physiology of phytoplankton. This study aimed to investigate the toxicological and physiological effects of IBU on the cyanobacteria Microcystis aeruginosa LE3 and Microcystis aeruginosa EAWAG 198, and the chlorophyte Chlorella sorokiniana. Exponential growth phase cultures were exposed to IBU at 10 to 10,000 μg/L for 96 h. The medium effect concentrations revealed varied sensitivity to IBU in the order Chlorella sorokiniana > Microcystis aeruginosa LE3 > Microcystis aeruginosa EAWAG 198. The drug caused a significant difference from control in cell density and chlorophyll-a of the three strains, except for chlorophyll-a in M. aeruginosa EAWAG 198 cultures where a significant difference occurred at 100 μg/L. The cell density of M. aeruginosa LE3 cultures exposed to 10 μg/L IBU increased 24 h post-exposure. Increasing concentrations of IBU induced higher total microcystins content of the Microcystis aeruginosa. Intracellular hydrogen peroxide content, peroxidase, and glutathione S-transferase activities, and lipid peroxidation increased as a function of IBU exposure. Total lipid, carbohydrate, and protein content of Chlorella sorokiniana were stimulated following IBU exposure. We conclude that the increasing presence of IBU in aquatic ecosystems could significantly alter the population dynamics of the investigated and other phytoplankton species.
Collapse
|
13
|
Draft Genome Sequence of a Ketoprofen Degrader, Rhodococcus erythropolis IEGM 746. Microbiol Resour Announc 2022; 11:e0107022. [DOI: 10.1128/mra.01070-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report a draft genome sequence of
Rhodococcus erythropolis
IEGM 746 isolated from oil-polluted soil from an oil-extracting enterprise, Udmurt Republic, Russia. This strain was able to degrade ketoprofen, a commonly used nonsteroidal anti-inflammatory drug. Using the obtained sequence, putative genes encoding enzymes for ketoprofen degradation were revealed.
Collapse
|
14
|
Badran I, Al‐Ejli MO. Efficient Multi‐walled Carbon Nanotubes/Iron Oxide Nanocomposite for the Removal of the Drug Ketoprofen for Wastewater Treatment Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ismail Badran
- Department of Chemistry Faculty of Sciences An-Najah National University Nablus Palestine, P.O.Box: 7
| | - Maan Omar Al‐Ejli
- Department of Chemistry and Earth Sciences College of Arts and Sciences Qatar University P.O. Box 2713 Doha Qatar College of Arts and Sciences, Qatar University
| |
Collapse
|
15
|
Ramírez-Morales D, Fajardo-Romero D, Rodríguez-Rodríguez CE, Cedergreen N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:714-724. [PMID: 35348978 DOI: 10.1007/s10646-022-02537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Plants represent uncommon targets to evaluate pharmaceuticals toxicity. In this work, Lemna minor was employed as a plant model to determine the toxicity of selected pharmaceuticals, and to assay if such toxicity could be predicted by QSAR models based on green algae. Among eight compounds, measurable toxicity was determined for ketoprofen (EC50 = 11.8 ± 1.9 mg/L), fluoxetine (EC50 = 27.0 ± 8.7 mg/L) and clindamycin 2-phosphate (EC50 = 57.7 ± 1.7 mg/L). Even though a correlation of r2 = 0.87 was observed between experimental toxicity towards algae and L. minor, QSAR estimations based on algae data poorly predicted the toxicity of pharmaceuticals on the plant. More experimental data for L. minor are necessary to determine the applicability of these predictions; nonetheless, these results remark the importance of measuring experimental ecotoxicological parameters for individual taxa. The toxicity of pharmaceutical binary mixtures (ketoprofen, fluoxetine and clindamycin) revealed in some cases deviations from the concentration addition model; nonetheless these deviations were small, thus the interactions are unlikely to be of severe biological significance. Moreover, the EC50 concentrations determined for these pharmaceuticals are significantly higher than those detected in the environment, suggesting that acute effects on L. minor would not take place at ecosystem level.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Daniela Fajardo-Romero
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Nina Cedergreen
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
16
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
17
|
Afsa S, De Marco G, Giannetto A, Parrino V, Cappello T, Ben Mansour H, Maisano M. Histological endpoints and oxidative stress transcriptional responses in the Mediterranean mussel Mytilus galloprovincialis exposed to realistic doses of salicylic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103855. [PMID: 35342010 DOI: 10.1016/j.etap.2022.103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
18
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Varsha M, Senthil Kumar P, Senthil Rathi B. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. CHEMOSPHERE 2022; 287:132270. [PMID: 34560497 DOI: 10.1016/j.chemosphere.2021.132270] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a class of contaminants with low concentrations but significant harm, have received a lot of attention in recent times. ECs comprises of various chemicals that enter the environment every day. In today's modern lifestyle, we use many chemical-based products. These persist in wastewater and ultimately enter the water bodies, causing serious problems to the human and aquatic ecosystem. This is because the conventional wastewater treatment methods are inefficient in identifying and removing such contaminants. Aiming for a long-term, effective solution to this issue, Adsorption was proposed. Although several adsorbents are already present in the market, which have proved beneficial in removing such ECs, not all are affordable. This article reviews replacing costly adsorbents with agriculture-based biomass that are abundant, inexpensive, and biodegradable and possess excellent adsorption capacity. The objectives of this article is to look at adsorption as a viable treatment option for emerging pollutants, as well as sophisticated and cost-effective emerging contaminants treatment options.
Collapse
Affiliation(s)
- M Varsha
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Senthil Rathi
- Deprtament of Chemical Engineering, St. Joseph' College of Engineering, Chennai, 603110, India
| |
Collapse
|
20
|
Preigschadt IA, Bevilacqua RC, Netto MS, Georgin J, Franco DSP, Mallmann ES, Pinto D, Foletto EL, Dotto GL. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H 2SO 4 activated Campomanesia guazumifolia bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2122-2135. [PMID: 34363168 DOI: 10.1007/s11356-021-15668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption's optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L-1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g-1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -8.78 kJ mol-1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.
Collapse
Affiliation(s)
- Isadora A Preigschadt
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Raíssa C Bevilacqua
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
21
|
Sousa B, Lopes J, Leal A, Martins M, Soares C, Azenha M, Fidalgo F, Teixeira J. Specific glutathione-S-transferases ensure an efficient detoxification of diclofenac in Solanum lycopersicum L. plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:263-271. [PMID: 34666279 DOI: 10.1016/j.plaphy.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is a very common pharmaceutical that, due to its high use and low removal rate, is considered a prominent contaminant in surface and groundwater worldwide. In this study, Solanum lycopersicum L. cv. Micro-Tom (tomato) was used to disclose the role of glutathione (GSH)-related enzymes, as GSH conjugation with DCF is a well reported detoxification mechanism in mammals and some plant species. To achieve this, S. lycopersicum plants were exposed to 0.5 and 5 mg L-1 of DCF for 5 weeks under a semi-hydroponic experiment. The results here obtained point towards an efficient DCF detoxification mechanism that prevents DCF bioaccumulation in fruits, minimizing any concerns for human health. Although a systemic response seems to be present in response to DCF, the current data also shows that its detoxification is mostly a root-specific process. Furthermore, it appears that GSH-mediated DCF detoxification is the main mechanism activated, as glutathione-S-transferase (GST) activity was greatly enhanced in roots of tomato plants treated with 5 mg L-1 DCF, accompanied by increased glutathione reductase activity, responsible for GSH regeneration. By applying a targeted gene expression analysis, we provide evidence, for the first time, that SlGSTF4 and SlGSTF5 genes, coding for GSTs from phi class, were the main players driving the conjugation of this contaminant. In this sense, and even though tomato plants appear to be somewhat tolerant to DCF exposure, research on GST activity can prove to be instrumental in remediating DCF-contaminated environments and improving plant growth under such conditions.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Jorge Lopes
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - André Leal
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jorge Teixeira
- GreenUPorto - Sustainable Agrifood Production Research Centre and Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
22
|
Soares C, Rodrigues F, Sousa B, Pinto E, Ferreira IMPLVO, Pereira R, Fidalgo F. Foliar Application of Sodium Nitroprusside Boosts Solanum lycopersicum L. Tolerance to Glyphosate by Preventing Redox Disorders and Stimulating Herbicide Detoxification Pathways. PLANTS 2021; 10:plants10091862. [PMID: 34579395 PMCID: PMC8466062 DOI: 10.3390/plants10091862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 01/24/2023]
Abstract
Strategies to minimize the effects of glyphosate (GLY), the most used herbicide worldwide, on non-target plants need to be developed. In this context, the current study was designed to evaluate the potential of nitric oxide (NO), provided as 200 µM sodium nitroprusside (SNP), to ameliorate GLY (10 mg kg−1 soil) phytotoxicity in tomato plants. Upon herbicide exposure, plant development was majorly inhibited in shoots and roots, followed by a decrease in flowering and fruit set; however, the co-application of NO partially prevented these symptoms, improving plant growth. Concerning redox homeostasis, lipid peroxidation (LP) and reactive oxygen species (ROS) levels rose in response to GLY in shoots of tomato plants, but not in roots. Additionally, GLY induced the overaccumulation of proline and glutathione, and altered ascorbate redox state, but resulted in the inhibition of the antioxidant enzymes. Upon co-treatment with NO, the non-enzymatic antioxidants were not particularly changed, but an upregulation of all antioxidant enzymes was found, which helped to keep ROS and LP under control. Overall, data point towards the benefits of NO against GLY in tomato plants by reducing the oxidative damage and stimulating detoxification pathways, while also preventing GLY-induced impairment of flowering and fruit fresh mass.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
- Correspondence:
| | - Francisca Rodrigues
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Bruno Sousa
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Edgar Pinto
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
- Department of Environmental Health, School of Health, P.Porto (ESS-P.Porto), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
| | - Ruth Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| |
Collapse
|
23
|
Markovic M, Neale PA, Nidumolu B, Kumar A. Combined toxicity of therapeutic pharmaceuticals to duckweed, Lemna minor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111428. [PMID: 33068976 DOI: 10.1016/j.ecoenv.2020.111428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals, which are designed to be biologically active at low concentrations, are found in surface waters, meaning aquatic organisms can be exposed to complex mixtures of pharmaceuticals. In this study, the adverse effects of four pharmaceuticals, 17α-ethynylestradiol (synthetic estrogen), methotrexate (anticancer drug), diclofenac (nonsteroidal anti-inflammatory drug) and fluoxetine (antidepressant), and their binary mixtures at mg/L concentrations were assessed using the 7-day Lemna minor test, with both apical and biochemical markers evaluated. The studied biochemical markers included chlorophyll a, chlorophyll b, carotenoids and oxidative stress enzymes catalase, glutathione-S-transferase and glutathione reductase, with effects compared to solvent controls. The adverse effects on Lemna minor were dose-dependent for frond number, surface area, relative chlorophyll content and activity of glutathione S-transferase for both individual pharmaceuticals and binary mixtures. According to the individual toxicity values, all tested pharmaceuticals can be considered as toxic or harmful to aquatic organisms, with methotrexate considered highly toxic. The most sensitive endpoints for the binary mixtures were photosynthetic pigments and frond surface area, with effects observed in the low mg/L concentration range. The concentration addition model and toxic unit approach gave similar mixture toxicity predictions, with binary mixtures of methotrexate and fluoxetine or methotrexate and 17α-ethynylestradiol exhibiting synergistic effects. In contrast, mixtures of diclofenac with fluoxetine, 17α-ethynylestradiol or methotrexate mostly showed additive effects. While low concentrations of methotrexate are expected in surface water, chronic ecotoxicological data for invertebrates and fish are lacking, but this is required to better assess the environmental risk of methotrexate.
Collapse
Affiliation(s)
- Marijana Markovic
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia; Soil Science, School of Agriculture Food and Wine, University of Adelaide, PMB 1 Glen Osmond, SA 5064 Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Bhanu Nidumolu
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia
| | - Anu Kumar
- CSIRO Land and Water, Waite Road, Urrbrae, SA 5064, Australia.
| |
Collapse
|
24
|
Alkimin GDD, Santos J, Soares AMVM, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108835. [PMID: 32585366 DOI: 10.1016/j.cbpc.2020.108835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals are a large and diverse group of compounds used to treat, prevent and diagnose disease. Among these, a group that has been recently detected in the aquatic environment is that of the azole compounds, commonly used as antifungals. Clotrimazole (CLO) is a nonbiodegradable persistent azole compound, with broad-spectrum antifungal activity for which virtually no toxicological data are available, especially towards aquatic plants. The few existent data point to a documented interference with cytochrome P450 system of exposed organisms. Therefore, the aim of this paper was to evaluate the ecotoxicological effects of the fungicide CLO on two aquatic macrophyte species, namely, Lemna minor and Lemna gibba. To attain this purpose, an acute assay (96 h) was performed with both species being exposed to CLO, in a concentration range of 0 to 5 μg L-1. The analyzed endpoints were levels of chlorophyll a and b, total, carotenoids, catalase (CAT) and glutathione -s-transferases activities (GSTs). In general, CLO exposure caused some minor alterations in L. minor and L. gibba pigment contents. Antioxidant enzymes exhibited a different pattern in both species, since the highest concentrations of CLO caused an increase on CAT activity, and a decrease on GSTs activity in L. minor, and the opposite in L. gibba, reflected by a decrease on CAT activity and an increase on GSTs activity in all tested concentrations. These results demonstrate that CLO exposure resulted in potential deleterious effects on macrophytes, namely with the involvement of the antioxidant defense mechanisms that were likely deployed to cope with pro-oxidative conditions established by CLO.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João Santos
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Carvalho MC, Tomazini A, Prado RA, Viviani VR. Selective inhibition of Zophobas morio (Coleoptera: Tenebrionidae) luciferase-like enzyme luminescence by diclofenac and potential suitability for light-off biosensing. LUMINESCENCE 2020; 36:367-376. [PMID: 32959965 DOI: 10.1002/bio.3952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
The accumulation of toxic carboxylic compounds may cause severe effects on the environment and living organisms. A luciferase-like enzyme, previously cloned from the Malpighian tubules of the non-luminescent Zophobas morio mealworm, displays thioesterification activity with a wide range of carboxylic substrates, and produces weak red luminescence in the presence of ATP and firefly d-luciferin, a xenobiotic for this organism. To better investigate the function of this enzyme in carboxylic xenobiotic detoxification, we analyzed the inhibitory effect of different xenobiotic carboxylic acids on the luminescence activity of this enzyme, including environmental pollutants and pharmaceutical compounds. Noteworthy, the anti-inflammatory drug diclofenac severely inhibited this luciferase-like enzyme luminescence activity, both in in vitro (IC50 20 μM) and in vivo in bacterial cells assays, when compared with other beetle luciferases. Similar results were obtained with its brighter I327S mutant. Kinetic analysis of diclofenac's effect on luminescence activity indicated mixed-type inhibition for both ATP and d-luciferin. Modelling studies showed five potential binding sites for diclofenac, including the coenzyme A binding site, which showed one of the highest binding constant. Taken together, these results raise the possibility of using this luciferase-like enzyme for the development of novel whole-cell luminescent biosensors for diclofenac and similar drugs.
Collapse
Affiliation(s)
- Mariele C Carvalho
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Atílio Tomazini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Rogilene A Prado
- Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Vadim R Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil.,Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| |
Collapse
|