1
|
Zhuang T, Gao C, Zeng W, Zhao W, Yu H, Chen S, Shen J, Ji M. Analysis of key targets for 5-hydroxymethyl-2-furfural-induced lung cancer based on network toxicology, network informatics, and in vitro experiments. Drug Chem Toxicol 2024:1-11. [PMID: 39072491 DOI: 10.1080/01480545.2024.2384442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
5-hydroxymethyl-2-furfural (5-HMF) is a by-product of Maillard reaction and widely exists in food and environment, which may lead to lung cancer. However, the relevant mechanism is unknown. This study aims to predict the key targets of 5-HMF-induced lung cancer through network toxicology, analyze the relationship between the key targets and lung cancer through network informatics, and further validate them through in vitro experiments. By using ChEMBL, STITCH, GeneCards, and OMIM databases, 51 toxic targets were identified. GO and KEGG enrichment analyses indicated a strong correlation between toxic targets and lung cancer. Through protein-protein interaction (PPI) analysis, MAPK3, MAPK1, and SRC were identified as key targets implicated in 5-HMF-induced lung cancer. The HPA database showed high expression of these three key targets in lung cancer tissues. Kaplan-Meier database demonstrated that the higher expression of these key targets in lung cancer patients was associated with a poorer prognosis. The TIMER database revealed that the high expression of these key targets had a significant impact on the level of immune cell infiltration in lung cancer, particularly impacting CD4+ T cells and macrophages. Finaly, in In vitro experiments demonstrated that prolonged exposure to 5-HMF induced malignant transformation of BEAS-2B cells and the upregulation of key targets. The findings suggest that 5-HMF is a contributing factor in the development of lung cancer, with MAPK3, MAPK1, and SRC potentially playing crucial roles in this process.
Collapse
Affiliation(s)
- Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chang Gao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Zeng
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenwu Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hairong Yu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Shen Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiemiao Shen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Yuan T, Hashimoto K, Tazaki A, Hasegawa M, Kurniasari F, Ohta C, Aoki M, Ohgami N, Kato M. Potential application of a hydrotalcite-like compound for reduction of toxicity to aquatic organisms via rapid and efficient removal of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115861. [PMID: 36050136 DOI: 10.1016/j.jenvman.2022.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) is known to have wide ranging toxicities not only as a gas but also as dissolved forms in aquatic environments. The diversity of aquatic organisms can be severely affected by hydrogen sulfide at very low concentrations, indicating the urgent necessity to develop an efficient method for removal of hydrogen sulfide in water. In this study, the removal capacity for hydrogen sulfide of our originally developed hydrotalcite-like compound composed of magnesium and iron (MF-HT) was investigated and its potential application for reduction of toxicity to aquatic organisms was evaluated. The MF-HT experimentally showed a high adsorption capacity of 146.5 mg/g with a fast adsorption equilibrium time of 45 min, both of which are top-class compared with those of other adsorbents previously reported. In fact, removal of hydrogen sulfide (1.2-152.5 mg/L) at an average rate of >97.6% was achieved in groundwater samples (n = 16) by the MF-HT within 60 min. The toxicities of groundwater, indicated by inhibition rate for microalgae (primary producers) and immobilization rate for crustaceans (secondary consumers), were reduced by 96.1% and 82.5% in 2-fold and 4-fold diluted groundwater, respectively, after treatment with the MF-HT for 60 min. These results indicate that MF-HT has an excellent safety record for aquatic organisms. After clarifying the adsorption mechanism, excellent reusability of MF-HT was also confirmed after regeneration using 1 M Na2CO3 solution. Considering the efficacy, speed, safety and cost of MF-HT, it could be a novel promising material for solving the problem of hydrogen sulfide pollution in the hydrosphere.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Department of Molecular Biology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Masahiro Hasegawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Chihiro Ohta
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masayo Aoki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Lizama-Allende K, Rámila CDP, Leiva E, Guerra P, Ayala J. Evaluation of surface water quality in basins of the Chilean Altiplano-Puna and implications for water treatment and monitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:926. [PMID: 36260192 PMCID: PMC9580442 DOI: 10.1007/s10661-022-10628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Water quality characterization and assessment are key to protecting human health and ecosystems, especially in arid areas such as northern Chile, where water resources are scarce and rich in pollutants. The objective of this study was to review and assess available official water quality data in the Chilean Altiplano-Puna basins for a 10-year period (2008-2018), including water treatment systems. Within the 43,600 km2 of Chilean Altiplano-Puna territory, only 16 official water quality monitoring stations had up-to-date data, and the sampling frequency was less than 3 per year. Most of the water samples collected at the evaluated stations exceeded the drinking and irrigation water Chilean standards for arsenic, boron, and electrical conductivity. Moreover, the characteristics of the Altiplano-Puna affect water quality inside and beyond the area, limiting water usage throughout the Altiplano-Puna basins. Drinking water treatment plants exist in urban and rural settlements; however, the drinking water supply in rural locations is limited due to the lack of adequate treatment and continuity of service. Wastewater treatment plants operate in some urban locations but rarely exist in rural locations. Limited data impede the proper assessment of water quality and thus the evaluation of the need for treatment systems. As such, the implementation of public policies that prioritize water with appropriate quantity and quality for local communities and ecosystems is imperative.
Collapse
Affiliation(s)
- Katherine Lizama-Allende
- Departamento de Ingeniería Civil, Universidad de Chile, Av. Blanco Encalada 2002, Santiago, 8370449 Chile
| | | | - Eduardo Leiva
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436 Chile
- Departamento de Ingeniería Hidráulica Y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436 Chile
| | - Paula Guerra
- Departamento de Ingeniería Química Y Ambiental, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, 8940897 Chile
| | | |
Collapse
|
4
|
Yuan T, Tazaki A, Hashimoto K, Al Hossain MMA, Kurniasari F, Ohgami N, Aoki M, Ahsan N, Akhand AA, Kato M. Development of an efficient remediation system with a low cost after identification of water pollutants including phenolic compounds in a tannery built-up area in Bangladesh. CHEMOSPHERE 2021; 280:130959. [PMID: 34162114 DOI: 10.1016/j.chemosphere.2021.130959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Water pollution caused by tannery wastewater is an important issue in developing countries. Most studies have focused on inorganic chemicals represented by chromium as a tannery-related main pollutant. This is the first study in which pollution of water by tannery-related organic chemicals was assessed by a combination of qualitative and quantitative analyses. Our quantitative analysis showed that the maximum concentration of total phenolic compounds (phenols), consisting of phenol, bisphenol F, p-cresol and chlorocresol, in canal water in a tannery built-up area in Bangladesh was >67-fold higher than the Environmental, Health and Safety (EHS) guideline value. Mapping of our results indicated tanneries as the sources of phenols pollution. Our original depurative, a hydrotalcite-like compound consisting of magnesium and iron (MF-HT), could adsorb all kinds of phenols and exhibited the highest phenol adsorption ability (115.8 mg/g) among reported hydrotalcite-like compounds. The levels of phenols in canal water samples were reduced to levels below the guideline value by using MF-HT with assistance of a photocatalytic reaction. Moreover, the mean level of chromium (112.2 mg/L) in canal water samples was decreased by 99.7% by using the depurative. Thus, the depurative has the potential for solving the problem of tannery-related water pollution by phenols and chromium.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - M M Aeorangajeb Al Hossain
- Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; Directorate General of Health Services, Ministry of Health and Family Welfare, Government of the People's Republic of Bangladesh, Mohakhali, Dhaka, 1212, Bangladesh
| | - Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Masayo Aoki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan
| | - Nazmul Ahsan
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Anwarul Azim Akhand
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Aichi, Japan; College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
5
|
Xu H, Ohgami N, Sakashita M, Ogi K, Hashimoto K, Tazaki A, Tong K, Aoki M, Fujieda S, Kato M. Intranasal levels of lead as an exacerbation factor for allergic rhinitis in humans and mice. J Allergy Clin Immunol 2021; 148:139-147.e10. [PMID: 33766551 DOI: 10.1016/j.jaci.2021.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Air pollutants are suspected to affect pathological conditions of allergic rhinitis (AR). OBJECTIVES After detecting Pb (375 μg/kg) in Japanese cedar pollen, the effects of intranasal exposure to Pb on symptoms of AR were investigated. METHODS Pollen counts, subjective symptoms, and Pb levels in nasal epithelial lining fluid (ELF) were investigated in 44 patients with Japanese cedar pollinosis and 57 controls from preseason to season. Effects of intranasal exposure to Pb on symptoms were confirmed by using a mouse model of AR. RESULTS Pb levels in ELF from patients were >40% higher than those in ELF from control subjects during the pollen season but not before the pollen season. Pb level in ELF was positively associated with pollen counts for the latest 4 days before visiting a hospital as well as scores of subjective symptoms. Intranasal exposure to Pb exacerbated symptoms in allergic mice, suggesting Pb as an exacerbation factor. Pb levels in ELF and nasal mucosa in Pb-exposed allergic mice were higher than those in Pb-exposed nonallergic mice, despite intranasally challenging the same amount of Pb. Because the increased Pb level in the nasal mucosa of Pb-exposed allergic mice was decreased after washing the nasal cavity, Pb on the surface of but not inside the nasal mucosa may have been a source of increased Pb level in ELF of allergic mice. CONCLUSIONS Increased nasal Pb level partially derived from pollen could exacerbate subjective symptoms of AR, indicating Pb as a novel hazardous air pollutant for AR.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Kazuhiro Ogi
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Keming Tong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Masayo Aoki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan.
| |
Collapse
|
6
|
Sudo M, Hashimoto K, Yoshinaga M, Azimi MD, Fayaz SH, Hamajima N, Kondo-Ida L, Yanagisawa K, Kato M. Lithium promotes malignant transformation of nontumorigenic cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140830. [PMID: 32721671 DOI: 10.1016/j.scitotenv.2020.140830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Because of the deficiency of water caused by the regional disparities of rainfall due to global warming, attention has been given to the use of well water as drinking water in developing countries. Our fieldwork study in Afghanistan showed that there was a maximum value of 3371 μg/L and an average value of 233 μg/L of lithium in well drinking water. Since the level of lithium in well water is higher than the levels in other countries, we investigated the health risk of lithium. After confirming no influence of ≤1000 μM lithium on cell viability, we found that lithium at concentrations of 100 and 500 μM promoted anchorage-independent growth of human immortalized keratinocytes (HaCaT) and lung epithelial cells (BEAS-2B) but not that of human keratinocytic carcinoma cells (HSC-5) or lung epithelial carcinoma cells (A549). The same concentrations of lithium also promoted phosphorylation of c-SRC and MEK/ERK but not that of AKT in the keratinocytes. Inhibitors of c-SRC (PP2) and MEK (PD98059) suppressed the lithium-induced increase in anchorage-independent growth of the keratinocytes. Our results suggested that lithium promoted transformation of nontumorigenic cells rather than progression of tumorigenic cells with preferential activation of the c-SRC/MEK/ERK pathway. Since previous pharmacokinetics studies indicated that it is possible for the serum level of lithium to reach 100 μM by drinking 2.5 L of water containing 3371 μg/L of lithium per day, the high level of lithium contamination in well drinking water in Kabul might be a potential oncogenic risk in humans.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Voluntary Body, International Health Care in Universities, Nagoya, Japan
| | - Masafumi Yoshinaga
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mohammad Daud Azimi
- Department of Human Resources, Ministry of Public Health, Kabul, Afghanistan
| | - Said Hafizullah Fayaz
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Administrative Office of the President, Deputy Public Relations and Outreach, Kabul, Afghanistan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lisa Kondo-Ida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Molecular and Cancer Medicine, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Department of Molecular and Cancer Medicine, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Voluntary Body, International Health Care in Universities, Nagoya, Japan; Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|