1
|
Zhang Z, Liu T, Li X, Ye Q, Bangash HI, Zheng J, Peng N. Metagenome-assembled genomes reveal carbohydrate degradation and element metabolism of microorganisms inhabiting Tengchong hot springs, China. ENVIRONMENTAL RESEARCH 2023; 238:117144. [PMID: 37716381 DOI: 10.1016/j.envres.2023.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.
Collapse
Affiliation(s)
- Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Chen PA, Wang HP, Kuznetsov AM, Masliy AN, Liu S, Chiang CL, Korshin GV. XANES/EXAFS and quantum chemical study of the speciation of arsenic in the condensate formed in landfill gas processing: Evidence of the dominance of As-S species. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130522. [PMID: 37055954 DOI: 10.1016/j.jhazmat.2022.130522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/19/2023]
Abstract
The XANES/EXAFS data and quantum chemical simulations presented in this study demonstrate several features of the chemistry of arsenic compounds found in the condensates and solids generated in landfill gas (LFG) processing carried out for renewable natural gas (RNG) production. The XANES data show the decrease in the position of the absorption edge of As atoms, similar to that characteristic for sulfur-containing As solutes and solids. The EXAFS data show that the As-O and As-S distances in these matrixes are similar to those in thioarsenates. Quantum-chemical calculations demonstrated the close agreement between the experimental and modeled As-S and As-O distances determined for a range of methylated and thiolated arsenic solutes. These calculations also showed that the increase of the number of the As-S bonds in the coordination shell of arsenic is accompanied by a consistent decrease of the charges of As atoms. This decrease is correlated with the number of the As-S bonds, in agreement with the trend observed in the XANES data. These results provide insight into the intrinsic chemistry and reactivity of As species present in LFG matrixes; they may be helpful for the development of treatment methods to control arsenic in these systems.
Collapse
Affiliation(s)
- Po-An Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| | - H Paul Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Andrey M Kuznetsov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Alexei N Masliy
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Siqi Liu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| | | | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| |
Collapse
|
3
|
Qing C, Nicol A, Li P, Planer-Friedrich B, Yuan C, Kou Z. Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. ENVIRONMENTAL RESEARCH 2023; 218:115033. [PMID: 36502897 DOI: 10.1016/j.envres.2022.115033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 μg/L and 12,700 μg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.
Collapse
Affiliation(s)
- Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Alan Nicol
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Yin Z, Ye L, Zhong W, Jing C. Thiolation of trimethylantimony: Identification and structural characterization. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127259. [PMID: 34844368 DOI: 10.1016/j.jhazmat.2021.127259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb), a re-emerging contaminant, has received increasing attentions. The toxicity and mobility of Sb depend on its species. However, little knowledge was available about its multiple chemical species in the environment. Here, we identified and characterized a previously unknown Sb species, trimethylmonothioantimony (TMMTSb). TMMTSb was readily formed when trimethylantimony (TMSb) reacted with sulfide. TMMTSb was separated using HPLC-ICP-MS and further identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and the results show the existence of [SbSC3H10]+, [SbSC3H9Na]+, and [SbSC3H9K]+. The formation of Sb-S bond in TMMTSb was evidenced by the Raman shift at 419 cm-1 compared with that in TMSb. Conclusively, the molecular formula was verified as SbS(CH3)3. Sb LIII-edge X-ray absorption near edge structure (XANES) spectrum revealed a higher intensity of the pre-edge peak at 4137 eV of TMMTSb than that of TMSb. The formation of TMMTSb was observed when the microbiota enriched from hot spring sediments and paddy soil were incubated with TMSb. Sulfate-reducing bacteria may be involved in the formation of TMMTSb. The finding of this thiolated methylantimony species may pave a new avenue for exploring the fate of Sb in the environment.
Collapse
Affiliation(s)
- Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Ye L, Zhong W, Zhang M, Jing C. New Mobilization Pathway of Antimonite: Thiolation and Oxidation by Dissimilatory Metal-Reducing Bacteria via Elemental Sulfur Respiration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:652-659. [PMID: 34730937 DOI: 10.1021/acs.est.1c05206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) mobilization is widely explored with dissimilatory metal-reducing bacteria (DMRB) via microbial iron(III)-reduction. Here, our study found a previously unknown pathway whereby DMRB release adsorbed antimonite (SbIII-O) from goethite via elemental sulfur (S0) respiratory reduction under mild alkaline conditions. We incubated SbIII-O-loaded goethite with Shewanella oneidensis MR-1 in the presence of S0 at pH 8.5. The incubation results showed that MR-1 reduced S0 instead of goethite, and biogenic sulfide induced the formation of thioantimonite (SbIII-S). SbIII-S was then oxidized by S0 to mobile thioantimonate (SbV-S), resulting in over fourfold greater Sb release to water compared with the abiotic control. SbIV-S was identified as the intermediate during the oxidation process by Fourier transform ion cyclotron resonance mass spectrometry and electron spin resonance analysis. The existence of SbIV-S reveals that the oxidation of SbIII-S to SbV-S follows a two-step consecutive one-electron transfer from Sb to S atoms. SbV-S then links with SbIII-S by sharing S atoms and inhibits SbIII-S polymerization and SbIII2S3 precipitation like a "capping agent". This study clarifies the thiolation and oxidation pathway of SbIII-O to SbV-S by S0 respiration and expands the role of DMRB in the fate of Sb.
Collapse
Affiliation(s)
- Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
7
|
Ye L, Jing C. Environmental geochemistry of thioantimony: formation, structure and transformation as compared with thioarsenic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1863-1872. [PMID: 34734613 DOI: 10.1039/d1em00261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimony (Sb), a redox-sensitive toxic element, has received global attention due to the increased awareness of its rich geochemistry. The past two decades have witnessed the explosive development in geochemistry of oxyanionic Sb(OH)3 and Sb(OH)6-. Emerging thioantimony species (Sb-S) have recently been detected, which actually dominate the Sb mobility in sulfate-reducing environments. However, the instability and complexity of Sb-S present the most pressing challenges. To overcome these barriers, it is urgent to summarize the existing research on the environmental geochemistry of Sb-S. Since Sb-S is an analogous species to thioarsenic (As-S), a comparison between Sb-S and As-S will provide insightful information. Therefore, this review presents a way of comparing environmental geochemistry between Sb-S and As-S. Here, we summarize the formation and transformation of Sb-S and As-S, their chemical structures and analytical methods. Then, the challenges and perspectives are discussed. Finally, the important scientific questions that need to be addressed are also proposed.
Collapse
Affiliation(s)
- Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Liu Y, Li C, Lou Z, Zhou C, Yang K, Xu X. Antimony removal from textile wastewater by combining PFS&PAC coagulation: Enhanced Sb(V) removal with presence of dispersive dye. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques. Talanta 2021; 226:122119. [PMID: 33676674 DOI: 10.1016/j.talanta.2021.122119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Chemical speciation is a relevant topic in environmental chemistry since the (eco)toxicity, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). Maintaining the chemical stability of the species and avoiding equilibrium disruptions during the sample treatment is one of the biggest challenges in chemical speciation, especially in environmental matrices where the level of concomitants/interferents is normally high. To achieve this task, strategies based on chemical properties of the species can be carried out and pre-concentration techniques are often needed due to the low concentration ranges of many species (μg L-1 - ng L-1). Due to the significance of the topic and the lack of reviews dealing with sample preparation of metal (loid)s (usually, sample preparation reviews focus on the total metal content), this work is presented. This review gives an up-to-date overview of the most common sample preparation techniques for environmental samples (water, soil, and sediments), with a focus on speciation of metal/metalloids and determination by spectrometric techniques. Description of the methods is given, and the most recent applications (last 10 years) are presented.
Collapse
|
10
|
Ye C, Ariya PA, Fu F, Yu G, Tang B. Influence of Al(III) and Sb(V) on the transformation of ferrihydrite nanoparticles: Interaction among ferrihydrite, coprecipitated Al(III) and Sb(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124423. [PMID: 33162243 DOI: 10.1016/j.jhazmat.2020.124423] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ferrihydrite is ubiquitous in natural environments and is usually co-precipitated with impure ions and toxic contaminants like Al(III) and Sb(V) during the neutralization process of acid mine drainage. However, little is known about the dynamic interactions among ferrihydrite, Al(III) and Sb(V). In this study, the influence of coprecipitated Al(III) and Sb(V) on the transformation of ferrihydrite was investigated. The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy before and after aging for 10 days at 70 °C. Results indicated that the Al(III) enhanced the immobilization of Sb(V) under neutral and alkaline conditions, and the presence of Sb(V) induced more production of extractable Al(III). XRD patterns revealed that the transformation rate of coprecipitated Al(III) and Sb(V) ferrihydrite was higher than Al-coprecipitated ferrihydrite. It is speculated that the presence of Sb(V) weakened the inhibition of Al(III) under experimental conditions. Competitive reaction of Al(III) and Sb(V) for substitution on the lattice Fe of ferrihydrite, likely decreased Al(III) substitution on ferrihydrite, and thus increased the observed transformation rate of ferrihydrite. These results have significant environmental implications for predicting the role of impurities and contaminants on ferrihydrite transformation processes.
Collapse
Affiliation(s)
- Chujia Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Parisa A Ariya
- Department of Atmospheric & Oceanic Sciences, McGill University, Montreal, PQ H3A 0B9, Canada; Department of Chemistry, McGill University, Montreal, PQ H3A 0B8, Canada
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|