1
|
Sun K, Huo X, Zhang Y, Zong C, Liu C, Sun Z, Yu X, Liao P. Mechanistic insights into the co-transport of microplastic degradation products in saturated porous media: The key role of microplastics-derived DOM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177597. [PMID: 39612703 DOI: 10.1016/j.scitotenv.2024.177597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Microplastic-derived dissolved organic matter (MP-DOM) forms from the aging of microplastics (MPs), but the co-transport behavior of MP-DOM and aged MPs (AMPs) remains poorly understood. This study investigates the co-transport of AMPs and MP-DOM generated from original MPs (OMPs) over a wide range of environmentally relevant conditions. The transport of AMPs and MP-DOM changes as the degree of aging increases, specifically related to changes in their physicochemical characteristics. Results showed that the order of migration ability was MP-DOM > AMPs > OMPs under almost all tested conditions. The change of hydrophobicity of MP-DOM and AMPs, as well as small molecular weight of MP-DOM, was primarily responsible for this order. The role of MP-DOM as a degradation product in the co-transport process is notably significant under various environmental conditions because of its high mobility and organic carbon fraction within the system. Furthermore, it is important to note that MP-DOM affected the transport of MPs through a combination of positive and negative effects. Key mechanisms include electrostatic repulsion caused by protonation reactions triggered by the acidic pH of MP-DOM, steric hindrance, and competition for retention sites on media surfaces. This study contributes to a deeper understanding of the transformation and fate of MPs in complex environmental systems.
Collapse
Affiliation(s)
- Kaixuan Sun
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Xiaofeng Huo
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, PR China
| | - Yanhong Zhang
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, PR China.
| | - Chengyuan Zong
- Zhejiang Environmental Technology Co., Ltd, Hangzhou, 310012, PR China
| | - Chao Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Zhanxue Sun
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Xiaoxia Yu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| |
Collapse
|
2
|
Bigler M, He X, Brusseau ML. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. WATER RESEARCH 2024; 260:121922. [PMID: 38878314 DOI: 10.1016/j.watres.2024.121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transport of PFOS and PFOA in well-characterized sand was investigated for relatively low water saturations. An instrumented column was used for some experiments to provide real-time in-situ monitoring of water saturation and matric potential. The results showed that water saturations and matric potentials varied minimally during the experiments. Flow rates were monitored continuously and were essentially constant. These results demonstrate that surfactant-induced flow and other nonideal hydraulic processes did not materially impact PFAS transport for the experiment conditions. Air-water interfacial adsorption was demonstrated to provide the great majority of retention for PFOS and PFOA. Retention was significantly greater at the lower water saturations (0.35-0.45) compared to the higher saturations (∼0.66) for both PFAS, due to the larger extant air-water interfacial areas. Retardation factors were 5 and 3-times greater at the lower water saturations for PFOS and PFOA, respectively. Early breakthrough was observed for the PFAS but not for the non-reactive tracers at the lower water saturations, indicating the possibility that air-water interfacial adsorption was rate-limited to some degree. Independently determined retention parameters were used to predict retardation factors for PFOS and PFOA, which were similar to the measured values in all cases. The consistency between the predicted and measured values indicates that PFAS retention was accurately represented. In addition, air-water interfacial adsorption coefficients measured from the transport experiments were consistent with independently measured equilibrium-based values. Based on these results, it appears that the air-water interfacial adsorption processes mediating the magnitude of PFOS and PFOA retention under lower water-saturation conditions are consistent with those for higher water saturations. This provides some confidence that our understanding of PFAS retention obtained from work conducted at higher water saturations is applicable to lower water saturations.
Collapse
Affiliation(s)
- Matthew Bigler
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Xuexiang He
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Mark L Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
3
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
4
|
Zhao K, Shang J. Effect of coupled physical and chemical heterogeneity on the transport of pristine and aged pyrogenic carbon colloids in unsaturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170542. [PMID: 38309361 DOI: 10.1016/j.scitotenv.2024.170542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Due to extensive application and recurrent wildfires, an increasing number of pyrogenic carbon (PyC) colloids are present in the environment, experiencing processes of environmental aging. Subsurface environments are typically heterogeneous in unsaturated conditions, which may affect the transport of PyC colloids. This study focused on the transport of both pristine and aged PyC colloids in physically (clean coarse and fine sand) and physicochemically (iron oxides-coated coarse and clean fine sand) heterogeneous porous media at three different water saturations (100 %, 70 %, and 40 %). In physically heterogeneous porous media, the decrease in water saturation from 100 % to 40 % led to a shift in the main water flow from the clean coarse sand to the clean fine sand domain, resulting in a continuous decrease in the transport of PyC colloids. In physicochemically heterogeneous porous media, the primary water flow shifted from the iron oxides-coated coarse sand to the clean fine sand domain, resulting in an initial increase and subsequent decrease in PyC colloid transport. Aging enhanced the transport of PyC colloids, attributed to the increasingly negative and hydrophilic surface. Retention profiles revealed substantial PyC colloid retention at the interface between coarse and fine sand domains. The release of retained PyC colloids exhibited two peaks at 100 % and 70 % water saturations, along with a single peak at 40 % water saturation. Additionally, the increased irreversible retention was observed at lower water saturation. This study underscores the significance of water content, environmental aging, and heterogeneity in PyC colloid transport. It provides essential insights into the environmental fate of PyC colloids in natural field conditions.
Collapse
Affiliation(s)
- Kang Zhao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
5
|
Li H, Zhang M, Dong Q, Fan Q, Gong T, Wang W. Iron (hydr)oxide dynamic transformation-induced perfluorooctanoic acid transport and attenuation effect: Impacts of initial goethite and associated minerals content and groundwater type. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122800. [PMID: 39492442 DOI: 10.1016/j.envpol.2023.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Perfluorooctanoic acid (PFOA) has been widely utilized, leading to serious contamination. Iron (hydr)oxide transformation was varied in media. Whereas, dynamic transformation effect was extensively unclear. Here, iron (hydr)oxide dynamic transformation-induced PFOA transport and attenuation was investigated by emphasizing initial goethite (α-FeOOH) and associated minerals content and groundwater type based on the multi-process attenuation model. Results revealed that groundwater type did not affect the PFOA attenuation pathway. However, it controlled the iron (hydr)oxide dynamic transformation differences. PFOA transport behavior (retardation factor R from 2.61 to 1.91) was significantly affected by iron (hydr)oxide dynamic transformation. Iron (hydr)oxide transformation induced the greatest PFOA transport risk (R = 1.91, attenuation rate λ = 0.0001 min-1) in SO42- environment, where complex α-FeOOH, Fe3O4, and β-Fe2O3·H2O transformed to simplex β-FeOOH, leading to instantaneous (Kd) and kinetic (α) two-site sorption fraction change. Furthermore, the associated mineral Fe3O4 of goethite was crucial in PFOA attenuation (λ from 0.0001 to 0.0002 min-1). Fe3O4 released Fe2+ and the oxidation of Fe2+ to Fe3+ provided electrons, facilitating the formation of F-(CF2)7-COO· radicals, which played a key role in the following cycle attenuation process. This study provides a theoretical basis for understanding the interaction mechanism of PFOA and iron (hydr)oxide dynamic transformation under groundwater differences.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Guo B, Saleem H, Brusseau ML. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8044-8052. [PMID: 37204869 DOI: 10.1021/acs.est.2c08601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many per- and polyfluoroalkyl substances (PFAS) are surface-active and adsorb at fluid-fluid interfaces. The interfacial adsorption controls PFAS transport in multiple environmental systems, including leaching through soils, accumulation in aerosols, and treatment methods such as foam fractionation. Most PFAS contamination sites comprise mixtures of PFAS as well as hydrocarbon surfactants, which complicates their adsorption behaviors. We present a mathematical model for predicting interfacial tension and adsorption at fluid-fluid interfaces for multicomponent PFAS and hydrocarbon surfactants. The model is derived from simplifying a prior advanced thermodynamic-based model and applies to nonionic and ionic mixtures of the same charge sign with swamping electrolytes. The only required model inputs are the single-component Szyszkowski parameters obtained for the individual components. We validate the model using literature interfacial tension data of air-water and NAPL (non-aqueous phase liquid)-water interfaces covering a wide range of multicomponent PFAS and hydrocarbon surfactants. Application of the model to representative porewater PFAS concentrations in the vadose zone suggests competitive adsorption can significantly reduce PFAS retention (up to 7 times) at some highly contaminated sites. The multicomponent model can be readily incorporated into transport models to simulate the migration of mixtures of PFAS and/or hydrocarbon surfactants in the environment.
Collapse
Affiliation(s)
- Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Hassan Saleem
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark L Brusseau
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Environmental Science, University of Arizona, Tucson, Arizona 85719, United States
| |
Collapse
|
8
|
Shu X, Wu Y, Zhang X, Yu F. Experiments and Models for Contaminant Transport in Unsaturated and Saturated Porous Media-A Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Hitzelberger M, Khan NA, Mohamed RAM, Brusseau ML, Carroll KC. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13675-13685. [PMID: 36126139 PMCID: PMC9664819 DOI: 10.1021/acs.est.2c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the most common per- and polyfluoroalkyl substances (PFAS) and is a significant risk driver for these emerging contaminants of concern. A series of two-dimensional flow cell experiments was conducted to investigate the impact of flow field heterogeneity on the transport, attenuation, and mass removal of PFOS. A simplified model heterogeneous system was employed consisting of a lower-permeability fine sand lens placed within a higher-permeability coarse sand matrix. Three nonreactive tracers with different aqueous diffusion coefficients, sodium chloride, pentafluorobenzoic acid, and β-cyclodextrin, were used to characterize the influence of diffusive mass transfer on transport and for comparison to PFOS results. The results confirm that the attenuation and subsequent mass removal of the nonreactive tracers and PFOS were influenced by mass transfer between the hydraulically less accessible zone and the coarser matrix (i.e., back diffusion). A mathematical model was used to simulate flow and transport, with the values for all input parameters determined independently. The model predictions provided good matches to the measured breakthrough curves, as well as to plots of reductions in mass flux as a function of mass removed. These results reveal the importance of molecular diffusion and pore water velocity variability even for systems with relatively minor hydraulic conductivity heterogeneity. The impacts of the diffusive mass transfer limitation were quantified using an empirical function relating reductions in contaminant mass flux (MFR) to mass removal (MR). Multi-step regression was used to quantify the nonlinear, multi-stage MFR/MR behavior observed for the heterogeneous experiments. The MFR/MR function adequately reproduced the measured data, which suggests that the MFR/MR approach can be used to evaluate PFOS removal from heterogeneous media.
Collapse
Affiliation(s)
- Michael Hitzelberger
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Naima A Khan
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Ruba A M Mohamed
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
| | - Mark L Brusseau
- University of Arizona Environmental Science Department, University of Arizona, Tucson, Arizona 85721, United States
| | - Kenneth C Carroll
- New Mexico State University Department of Plant and Environmnetal Sciences, Las Cruces, New Mexico 88003, United States
- University of Arizona Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Qi L, Li R, Wu Y, Lin X, Chen G. Effect of solution chemistry on the transport of short-chain and long-chain perfluoroalkyl carboxylic acids (PFCAs) in saturated porous media. CHEMOSPHERE 2022; 303:135160. [PMID: 35640683 DOI: 10.1016/j.chemosphere.2022.135160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) are one of the most widely detected classes of PFAS in the global environment after decades of intensive use. This study investigated the impact of perfluorinated carbon chain length on the transport behavior of PFCAs by testing and modeling two short-chain (PFPeA and PFHxA) and two long-chain PFCAs (PFOA and PFDA) in laboratory water-saturated columns. Moreover, their transport behavior was examined under different solution chemistry conditions, including pH, ionic strength, and cationic type. The experimental and simulation results indicated that the chain length had a limited impact on transport behaviors of PFPeA, PFHxA, and PFOA under various pH and ionic strengths, evidenced by their tracer-like breakthrough curves. In contrast, the mobility of PFDA was significantly affected by pH and ionic strengths. Additionally, the transport of all four PFCAs was inhabited in the presence of the divalent cation Ca2+. This study could help predict migration behavior and assess the potential risk of PFCAs in the subsurface system.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Yudi Wu
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
11
|
Zhao P, Geng T, Guo Y, Meng Y, Zhang H, Zhao W. Transport of E. coli colloids and surrogate microspheres in the filtration process: Effects of flow rate, media size, and media species. Colloids Surf B Biointerfaces 2022; 220:112883. [DOI: 10.1016/j.colsurfb.2022.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
|
12
|
Zhang Q, Wu X, Lyu X, Gao B, Wu J, Sun Y. Effects of anionic hydrocarbon surfactant on the transport of perfluorooctanoic acid (PFOA) in natural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24672-24681. [PMID: 34826077 DOI: 10.1007/s11356-021-17680-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The widespread usage of per- and polyfluoroalkyl substances (PFASs) has led to their ubiquitous co-existence with hydrocarbon surfactants in the subsurface environment. In this study, column experiments were conducted to investigate the effect of an anionic hydrocarbon surfactant (sodium dodecylbenzene sulfonate, SDBS, 1 and 10 mg/L) on the transport of perfluorooctanoic acid (PFOA) in two saturated natural soils under different cation type (Na+ and Ca2+) conditions. Results showed that SDBS (10 mg/L) significantly enhanced the transport of PFOA in two soils. This was likely because SDBS had a stronger adsorption affinity to the soils than PFOA, and can outcompete PFOA for the finite adsorption sites on the soil surface. The effect of SDBS on PFOA transport varied greatly in the two soils. More negatively charged soil surface and greater soil particle size likely contributed to the more noticeable transport-enhancement of PFOA resulting from the presence of SDBS. Also, the enhancement effect of SDBS (10 mg/L) with Ca2+ on PFOA transport was more significantly than that with Na+. This was possibly due to the blocking effect of SDBS to the more positively charged soil surface induced by Ca2+. Findings of this study point out the importance of anionic hydrocarbon surfactants on PFOA transport when assessing its environmental risks and implementing remediation efforts.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Xiaoli Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Liu G, Stewart BA, Yuan K, Ling S, Zhang M, Wang G, Lin K. Comprehensive adsorption behavior and mechanism of PFOA and PFCs in various subsurface systems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148463. [PMID: 34198087 DOI: 10.1016/j.scitotenv.2021.148463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The adsorption-desorption performance of perfluorooctanoic acid (PFOA), one of the environmentally persistent pollutants which is refractory to degrade in soil, was investigated and reported. The adsorption-desorption process of PFOA was firstly conducted using different fractions (sand, coarse silt and fine silt) of soil collected from Shanghai, China. More than 50% of PFOA (2.0 mg/L) could be adsorbed by soils while only less than 10% of which could be desorbed once contamination occurs. The kinetics and particle diffusion rates of PFOA in different fractions of soil were calculated and analyzed in detail. Apart from this, the retention of short-chained PFCs, which can be generated as degradation products of PFOA, were also measured. In single solute systems, the adsorption of pollutants in soils dramatically increased as the chain length of PFCs grew longer. Similarly, in mixed solutions, preferential adsorption of longer-chained PFCs over shorter chains in soils were sited, attributable to the stronger hydrophobicity of the pollutants. However, the desorption of them performed in reverse, where the desorption rates of longer-chained PFCs were far lower than those of shorter ones. Furthermore, influencing factors including pH, temperature and co-existing matters were studied during the adsorption process. After comprehending the adsorption behavior of PFOA in soil fractions, the situation of the adsorption of PFOA in various soils chosen from nine provinces in China was investigated and compared. There was an obvious discrepancy, whether it be from the rate or the amount of adsorption of PFOA (approximately 10%), in the nine different soils. Finally, a multiple linear regressive equation was employed to sort influencing parameters which are prone to affect the adsorption of PFOA in soils, the contribution of these are provided in order of relevance. These results demonstrate the adsorption performance and behavior of PFOA and PFCs in different soils, which can be utilized as a scientific reference for maximizing remediation of PFOA polluted sites in the future.
Collapse
Affiliation(s)
- Guanhong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Brittney Ashley Stewart
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Yuan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guangju Wang
- School of Science, The Hong Kong University of Science and Technology, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Ji Y, Yan N, Brusseau ML, Guo B, Zheng X, Dai M, Liu H. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10480-10490. [PMID: 34288652 PMCID: PMC8634892 DOI: 10.1021/acs.est.1c01919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The transport and retention behavior of perfluorooctanoic acid (PFOA) in the presence of a hydrocarbon surfactant under saturated and unsaturated conditions was investigated. Miscible-displacement transport experiments were conducted at different PFOA and sodium dodecyl sulfate (SDS) input ratios to determine the impact of SDS on PFOA adsorption at solid-water and air-water interfaces. A numerical flow and transport model was employed to simulate the experiments. The PFOA breakthrough curves for unsaturated conditions exhibited greater retardation compared to those for saturated conditions in all cases, owing to air-water interfacial adsorption. The retardation factor for PFOA with a low concentration of SDS (PFOA-SDS ratio of 10:1) was similar to that for PFOA without SDS under unsaturated conditions. Conversely, retardation was greater in the presence of higher levels of SDS (1:1 and 1:10) with retardation factors increasing from 2.4 to 2.9 and 3.6 under unsaturated conditions due to enhanced adsorption at the solid-water and air-water interfaces. The low concentration of SDS had no measurable impact on PFOA air-water interfacial adsorption coefficients (Kia) determined from the transport experiments. The presence of SDS at the higher PFOA-SDS concentration ratios increased the surface activity of PFOA, with transport-determined Kia values increased by 27 and 139%, respectively. The model provided very good independently predicted simulations of the measured breakthrough curves and showed that PFOA and SDS experienced various degrees of differential transport during the experiments. These results have implications for the characterization and modeling of poly-fluoroalkyl substances (PFAS) migration potential at sites wherein PFAS and hydrocarbon surfactants co-occur.
Collapse
Affiliation(s)
- Yifan Ji
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Corresponding author
| | - Mark L. Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States
- DepartmentDepartment of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States
- Corresponding author
| | - Bo Guo
- DepartmentDepartment of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengfan Dai
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hejie Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
15
|
Brusseau ML. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients. WATER RESEARCH 2021; 190:116778. [PMID: 33387950 PMCID: PMC7856177 DOI: 10.1016/j.watres.2020.116778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/19/2023]
Abstract
Determining robust values for the air-water or NAPL-water interfacial adsorption coefficient, KIA, is key to characterizing and modeling PFAS transport and fate in several environmental systems. Direct, high-resolution measurements of surfactant adsorption at the fluid-fluid interface were aggregated from the literature. This data set was used to examine the accuracy and applicability of Γ and KIA measurements determined for three PFAS from transport experiments and surface-tension data. The transport-measured Γ and KIA data were observed to be fully consistent with the directly-measured data. Specifically, Γ values for the two methods were entirely coincident in the region of overlapping concentrations, which spanned ~4 orders-of-magnitude. Furthermore, the two data sets adhered to an identical Γ-C profile. These results conclusively demonstrate the accuracy of the transport-measured values. Γ and KIA values determined from the application of the Gibbs adsorption equation to measured surface-tension data were fully consistent with the directly-measured and transport-measured data sets, demonstrating their applicability for representing PFAS transport in environmental systems. The directly-measured data were used to examine the concentration dependency of KIA values, absent the potential confounding effects associated with the use of surface-tension or transport-measured data. The directly-measured data clearly demonstrate that KIA attains a constant, maximum limit at lower concentrations. Two separate analyses of the transport-measured data both produced observations of constant KIA values at lower concentrations, consistent with the directly-measured data. These outcomes are discussed in terms of surface activities, relative surface coverages, and critical concentrations.
Collapse
Affiliation(s)
- Mark L Brusseau
- Environmental Science Department (Home) and Hydrology & Atmospheric Sciences Department (Joint), University of Arizona, Tucson, Arizona, United States.
| |
Collapse
|