1
|
Adeniran JA, Ogunlade BT, Toluwalope Odediran E, Olasunkanmi Yusuf R, Ademola Sonibare J. Polycyclic aromatic hydrocarbons within the vicinity of a scrap-iron smelting plant: indoor-outdoor and seasonal pattern, source, and exposure risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-19. [PMID: 39561051 DOI: 10.1080/09603123.2024.2431228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The growing demand for ferrous metals and abundant scrap materials has fueled Nigeria's scrap-iron smelting industry, leading to hazardous pollutant emissions. This study investigated the concentrations, seasonal and indoor-outdoor variations, origins, and health impacts of polycyclic aromatic hydrocarbons (PAHs) in dust samples around a scrap-iron smelting facility. Analyses of dust samples revealed that high molecular weight PAHs (HMWPAHs) dominated during both seasons, with 5-ring PAHs (34%) contributing most during the rainy season and 3-ring PAHs (36%) during the dry season. Carcinogenic PAHs were more prevalent in the rainy season compared to the dry season. Seven PAH sources were identified, with gasoline combustion being the dominant source during the rainy season and iron and steel production during the dry season. Incremental lifetime cancer risk (ILCR) assessments showed PAH concentrations within safe limits, with dermal contact identified as the primary exposure pathway for both children and adults in the study area.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Ademola Sonibare
- Environmental Engineering Research Laboratory, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
2
|
Sargazi S, Tabatabaei SM, Ehrampoush MH, Saravani R, Zare Sakhvidi MJ, Fallahzadeh H, Ebrahimi AA. Phase distribution and probabilistic risk assessment of polycyclic aromatic hydrocarbons in indoor air of coffee shops at Zahedan, Iran. Heliyon 2024; 10:e36291. [PMID: 39386858 PMCID: PMC11462464 DOI: 10.1016/j.heliyon.2024.e36291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of hydrocarbons, some of which are established human carcinogens. Human exposure to these chemicals is complex and originates from both indoor and outdoor sources. This study measured the concentration of PAHs in the gaseous and particulate phases during the cold months of 2022 using XAD-2 sorbent tubes and Polytetrafluoroethylene (PTFE) filters in the indoor air of coffee shops in Zahedan, Iran (n = 23). The average concentrations of particulate-bound PAHs and gaseous PAHs were 13,411.86 ± 6517.24 ng/m³ and 6432.76 ± 4311.72 ng/m³, respectively. Source apportionment analyses indicated that the primary sources of PAHs in coffee shops were fossil fuel combustion and environmental tobacco smoke (ETS), commonly referred to as second and third-hand smoke. The lifetime cancer risk (LTCR) of inhaled PAHs was calculated using the Monte Carlo simulation method. The mean LTCR for adults and children from inhaling these substances were 9.43 × 10-6 ± 5.06 × 10-6 and 5.34 × 10-6 ± 2.87 × 10-6, respectively. The hazard quotient (HQ) of PAHs exceeded 1. These findings highlight the need to reduce PAHs exposure in public spaces through proper health warning labels and regulated indoor smoking policies.
Collapse
Affiliation(s)
- Shahnaz Sargazi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mohammad Hassan Ehrampoush
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Javad Zare Sakhvidi
- Occupational Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Duan H, Wang Y, Shen H, Ren C, Li J, Li J, Wang Y, Su Y. Source-specific probabilistic health risk assessment of dust PAHs in urban parks based on positive matrix factorization and Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:451. [PMID: 39316207 DOI: 10.1007/s10653-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).
Collapse
Affiliation(s)
- Haijing Duan
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanfeng Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Haoxin Shen
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chong Ren
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jing Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jiaheng Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanxia Su
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China.
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Zhang Q, Zhao Z, Wu Z, Niu X, Zhang Y, Wang Q, Ho SSH, Li Z, Shen Z. Toxicity source apportionment of fugitive dust PM 2.5-bound polycyclic aromatic hydrocarbons using multilayer perceptron neural network analysis in Guanzhong Plain urban agglomeration, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133773. [PMID: 38382337 DOI: 10.1016/j.jhazmat.2024.133773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban fugitive dust, known for their toxicity and ability to generate reactive oxygen species (ROS), are a major public health concern. This study assessed the spatial distribution and health risks of 15 PAHs in construction dust (CD) and road dust (RD) samples collected from June to November 2021 over the cities of Tongchuan (TC), Baoji (BJ), Xianyang (XY), and Xi'an (XA) in the Guanzhong Plain, China. The average concentration of ΣPAHs in RD was 39.5 ± 20.0 μg g-1, approximately twice as much as in CD. Four-ring PAHs from fossil fuels combustion accounted for the highest proportion of ΣPAHs in fugitive dust over all four cities. Health-related indicators including benzo(a)pyrene toxic equivalency factors (BAPTEQ), oxidative potential (OP), and incremental lifetime cancer risk (ILCR) all presented higher risk in RD than those in CD. The multilayer perceptron neural network algorithm quantified that vehicular and industrial emissions contributed 86 % and 61 % to RD and CD BAPTEQ, respectively. For OP, the sources of biomass and coal combustion were the key generator which accounted for 31-54 %. These findings provide scientific evidence for the direct efforts toward decreasing the health risks of fugitive dust in Guanzhong Plain urban agglomeration, China.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Ziyi Zhao
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhichun Wu
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyi Niu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuhang Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno NV89512, United States
| | - Zhihua Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Pradhan AK, Gope M, Pobi KK, Saha S, Gupta S, Bhattacharjee RR, Nayek S. Geostatistical appraisal of water quality, contamination, source distribution of potentially toxic elements (PTEs) in the lower stretches of Subarnarekha River (Odisha), India, and health risk assessment by Monte Carlo simulation approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:42. [PMID: 38227078 DOI: 10.1007/s10653-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024]
Abstract
In the present study, the status of water quality, environmental contamination in the lower stretch of Subarnarekha River with respect to potentially toxic elements (PTEs), its seasonal distribution, and ecotoxicological health impacts were investigated. For this purpose, a combination of indexing approaches and geospatial methods was used. The estimated water quality index (WQI) has shown that the river water falls under "moderate to very poor" category during the pre-monsoon and "moderate to poor" category in the post-monsoon season. The abundance of PTEs (Pb, Cu, Ni, Cd, Fe, and Cr) was on the higher side during the pre-monsoon in comparison with the post-monsoon season. The results of contamination index (Cd) and heavy metal evaluation index (HEI) explain that Subarnarekha River has low-to-moderate levels of contamination with PTEs in the majority of sampling sites. However, HPI indicated that the river water is moderate-to-highly contaminated with PTEs in both seasons. Principal component analysis (PCA) and cluster analysis (CA) reveal that anthropogenic sources are prime contributors to PTEs contamination in Subarnarekha River. The potential non-cancerous health concerns for child and adults due to Cr and Pb in some sampling stations along the river stretch have been observed. The carcinogenic risk (CR) has been established for Cr, Pb, and Cd in Subarnarekha River with Cr (> 10-4) as the most unsafe element. Monte Carlo simulation (MCS) indicates a high risk of cancer hazards due to Cr (values > 1E-04) in present as well as future for both child and adults.
Collapse
Affiliation(s)
- Anup Kumar Pradhan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad, Telangana, India
| | - Manash Gope
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Sucharita Saha
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Srimanta Gupta
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Sumanta Nayek
- Amity Institute of Environmental Sciences, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Li JN, Zhang Y, Wang JX, Xiao H, Nikolaev A, Li YF, Zhang ZF, Tang ZH. Occurrence, Sources, and Health Risks of Polycyclic Aromatic Hydrocarbons in Road Environments from Harbin, a Megacity of China. TOXICS 2023; 11:695. [PMID: 37624200 PMCID: PMC10458957 DOI: 10.3390/toxics11080695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
To obtain a comprehensive understanding about that occurrence, sources, and effects on human health of polycyclic aromatic hydrocarbons (PAHs) in road environmental samples from Harbin, concentrations of 32 PAHs in road dust, green belt soil, and parking lot dust samples were quantified. The total PAH concentrations ranged from 0.95 to 40.7 μg/g and 0.39 to 43.9 μg/g in road dust and green belt soil, respectively, and were dominated by high molecular weight PAHs (HMW-PAHs). Despite the content of PAHs in arterial roads being higher, the composition profile of PAHs was hardly influenced by road types. For parking lot dust, the range of total PAH concentrations was 0.81-190 μg/g, and three-ring to five-ring PAHs produced the maximum contribution. Compared with surface parking lots (mean: 6.12 μg/g), higher total PAH concentrations were detected in underground parking lots (mean: 33.1 μg/g). The diagnostic ratios of PAHs showed that petroleum, petroleum combustion, and biomass/coal combustion were major sources of PAHs in the samples. Furthermore, according to the Incremental Lifetime Cancer Risk model, the cancer risks of three kinds of samples for adults and children were above the threshold (10-6). Overall, this study demonstrated that PAHs in the road environment of Harbin have a certain health impact on local citizens.
Collapse
Affiliation(s)
- Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia;
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, ON M2N 6X9, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China;
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.-N.L.); (Y.Z.); (J.-X.W.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Ning Y, Guo Z, Zhang J, Niu S, He B, Xiao K, Liu A. Characterizing polycyclic aromatic hydrocarbons on road dusts in Shenzhen, China: implications for road stormwater reuse safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4951-4963. [PMID: 37004581 DOI: 10.1007/s10653-023-01547-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Urban road stormwater reuse is one of the most effective ways to mitigate water resource shortage. However, due to a diversity of human activities such as traffic, various toxic pollutants can be deposited on road surfaces during dry periods and washed off during wet periods, threatening stormwater reuse safety. Among these pollutants, polycyclic aromatic hydrocarbons (PAHs) have been widely found in road stormwater. This study selected twelve road sites in Shenzhen, China, and investigated PAHs deposited on urban roads and their influential factors (traffic characteristics, land use and road surface condition). The research outcomes showed that high-molecular-weight PAH species (5-6 benzene rings) had higher concentrations and variability on spatial distributions than light-molecular-weight ones (2-4 benzene rings). Additionally, more PAHs were attached to dusts with small particle sizes (< 150 µm), and among influential factors, commercial land use showed a stronger correlation with PAHs distributions, regardless of particle sizes. Furthermore, it is noteworthy that traffic volume did not have an important influence on PAH generations on roads, while the source tracking results did indicate that traffic activities were the main contributor of PAHs. This implies that other traffic characteristics such as frequent go-and-stop activities might also contribute PAHs on roads. This means that areas with frequent traffic congestions could be the "hot spot" areas of PAHs, although the traffic volume might be not high. These research outcomes can provide useful insight into effective stormwater management and ensuring their reuse safety.
Collapse
Affiliation(s)
- Yunfang Ning
- Shenzhen Municipal Engineering Corporation, Shenzhen, 518110, People's Republic of China
| | - Zhigang Guo
- Shenzhen Municipal Engineering Corporation, Shenzhen, 518110, People's Republic of China
| | - Jiantong Zhang
- Shenzhen Municipal Engineering Corporation, Shenzhen, 518110, People's Republic of China
| | - Shuangjian Niu
- Shenzhen Municipal Engineering Corporation, Shenzhen, 518110, People's Republic of China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ke Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
8
|
Caumo S, Yera AB, Alves C, Rienda IC, Kováts N, Hubai K, de Castro Vasconcellos P. Assessing the chemical composition, potential toxicity and cancer risk of airborne fine particulate matter (PM 2.5) near a petrochemical industrial area. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104170. [PMID: 37295738 DOI: 10.1016/j.etap.2023.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In the vicinity of a petrochemical industrial region in São Paulo, Brazil, PM2.5-bound organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, oxy-PAHs, hopanes, and inorganic species were evaluated. Oxidative potential (OP), burden (OB), and Alivibrio fischeri bioluminescence inhibition (AFBIA) assays were conducted to determine the potential health effects of exposure to these compounds. The PM2.5 mean concentration was 32.0±18.2µgm-3, and benzo (a)pyrene was found to exceed recommended levels by at least four times. Secondary sources and vehicular emissions were indicated by nitro-PAHs, oxy-PAHs, and inorganic species. The OP and OB results revealed that secondary compounds favored antioxidant depletion. The AFBIA results showed that 64% of the samples were toxic. These findings emphasize the need to reduce the exposure risk and take measures to protect human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Casotti Rienda
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nora Kováts
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Katalin Hubai
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | | |
Collapse
|
9
|
Li Z, Yang Q, Xie C, Wang H, Wang Y. Spatiotemporal characteristics of groundwater quality and health risk assessment in Jinghe River Basin, Chinese Loess Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114278. [PMID: 36379071 DOI: 10.1016/j.ecoenv.2022.114278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Groundwater is a very important natural resource for humanity, however, the degradation of groundwater quality caused by anthropogenic activities may pose a serious hazard to human health and ecosystem. In this study, 143 groundwater samples were analyzed to investigate the spatiotemporal variations of hydrochemistry, groundwater quality and potential human health risk of groundwater in Jinghe River Basin, Chinese Loess Plateau. Based on the mean concentrations value (MCV) and over-standard rate (OSR), the groundwater in Jinghe River Basin were divided into three groups: Group Ⅰ (high MCV: greater than standard values and high OSR: ≥ 10 %) contains TDS (total dissolved solids), TH (total harness), SO42-, F- and Fe; Group Ⅱ (low MCV and high OSR) contains pH, Cl-, NO3-, Cr6+ and As, Group Ⅲ (low MCV and low OSR) contains NO2-, NH4+, Zn, Mn, Pb, I- and Cd. The results of set pair assessment indicated that the unsuitable and doubtful class of comprehensive groundwater quality are mainly distributed in the northern part of study area, accounting for 29 % and 13.6 % of the area in 2004 and 2015, respectively. Human health risk assessment based on the triangular fuzzy number suggested that the variation of risk levels in different age groups is Children > Adult Men > Adult Women. Average carcinogenic risks of As in groundwater for the three groups exceed the acceptable level, and non-carcinogenic risk of NO3- for Children is higher than the acceptable threshold. The findings of this study provide valuable insight into the spatiotemporal characteristics of groundwater quality and potential health risks of polluted groundwater by anthropogenic activities.
Collapse
Affiliation(s)
- Zijun Li
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, PR China; Hebei Key Laboratory of Environment Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, PR China; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change Hebei Normal University, Shijiazhuang 050024, PR China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| | - Chuan Xie
- Geothermal Institute of Hydrological Engineering Geological Survey, Shijiazhuang 050000, PR China
| | - Hao Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Yanli Wang
- Limited Company of Beijing Satellite Manufacturing Factory, Beijing 100094, PR China
| |
Collapse
|
10
|
Sun Y, Chen J, Qin W, Yu Q, Xin K, Ai J, Huang H, Liu X. Gas-PM 2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: Impact of domestic heating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120156. [PMID: 36096260 DOI: 10.1016/j.envpol.2022.120156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The diurnal variation, gas-particle partitioning, health risks, and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in a northern basin city of China in winter, 2020. The mean concentrations of particulate and gaseous PAHs were 87.90 ng m-3 and 69.65 ng m-3, respectively, and their concentrations were considerably enhanced during the domestic heating period. The relationship between the gas-particle partitioning coefficient of PAHs (KP) and subcooled liquid vapor pressure of PAHs (PL0) indicated organic absorption as the mechanism for this partitioning. However, the dual sorption model confirmed adsorption onto elemental carbon (EC). The health risks indicated by several equivalent parameters showed an important health effect of PAHs, especially of particulate PAHs bound onto PM2.5 during the heating period. Environmentally persistent free radicals (EPFRs) were also studied as an auxiliary parameter to evaluate the health impact of PAHs. According to the diagnostic ratios of PAHs and PMF model results, petroleum volatilization and coal combustion were the dominant sources of particulate PAHs during the non-heating and heating periods, respectively. The source apportionment results can help efficiently control PAHs and their health risks.
Collapse
Affiliation(s)
- Yuewei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China.
| | - Weihua Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Ke Xin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Jing Ai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Huiying Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| | - Xingang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
12
|
A comprehensive review on occurrence, source, effect, and measurement techniques of polycyclic aromatic hydrocarbons in India. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jia B, Tian Y, Dai Y, Chen R, Zhao P, Chu J, Feng X, Feng Y. Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119551. [PMID: 35649451 DOI: 10.1016/j.envpol.2022.119551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The health effects of potentially toxic elements (PTEs) in airborne particulate matter (PM) are strongly dependent on their size distribution and dissolution. This study examined PTEs within nine distinct sizes of PM in a Chinese megacity, with a focus on their deposited and dissolved bioaccessibility in the human pulmonary region. A Multiple Path Particle Dosimetry (MPPD) model was used to estimate the deposited bioaccessibility, and an in-vitro experiment with simulated lung fluid was conducted for dissolved bioaccessibility. During the non-heating season, the dissolved bioaccessible fraction (DBF) of As, Cd, Co, Cr, Mn, Pb and V were greater in fine PM (aerodynamics less than 2.1 μm) than in coarse PM (aerodynamics between 2.1 and 10 μm), and vice versa for Ni. With the increased demand of heating, the DBF of Pb and As decreased in fine particle sizes, probably due to the presence of oxide/silicate compounds from coal combustion. Inhalation health risks based on the bioaccessible concentrations of PTEs displayed the peaks in <0.43 μm and 2.1-3.3 μm particulate sizes. The non-cancer risk was at an acceptable level (95th percentiles of hazard index (HI) was 0.49), but the cancer risk exceeded the threshold value (95th percentiles of total incremental lifetime cancer risk (TCR) was 8.91 × 10-5). Based on the results of uncertainty analysis, except for the exposure frequency, the total concentrations and DBF of As and Cr in <0.43 μm particle size segment have a greater influence on the uncertainty of probabilistic risk.
Collapse
Affiliation(s)
- Bin Jia
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China.
| | - Yuqing Dai
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rui Chen
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Jingjing Chu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Xin Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China
| |
Collapse
|
14
|
Yusuf RO, Odediran ET, Adeniran JA, Adesina OA. Polycyclic aromatic hydrocarbons in road dusts of a densely populated African city: spatial and seasonal distribution, source, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44970-44985. [PMID: 35146606 DOI: 10.1007/s11356-022-18943-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Road dust is a principal source and depository of polycyclic aromatic hydrocarbons (PAHs) in many urban areas of the world. Hence, this study probed the spatial and seasonal pattern, sources, and related cancer health risks of PAHs in the road dusts sampled at ten traffic intersection (TIs) of a model African city. Mixed PAHs sources were ascertained using the diagnostic ratios and positive matrix factorization (PMF) model. The results showed fluctuations in mean concentrations from 36.51 to 43.04 µg/g. Three-ring PAHs were the most abundant PAHs with anthracene (Anth) ranging from 6.84 ± 1.99 to 9.26 ± 4.42 µg/g being the predominant pollutant in Ibadan. Benzo(k)Fluoranthene (BkF) which is a pointer of traffic emission was the most dominant among the seven carcinogenic PAHs considered, varying from 2.68 ± 0.43 to 4.59 ± 0.48 µg/g. Seasonal variation results showed that PAH concentrations were 20% higher during dry season than rainy season. The seven sources of PAHs identified by PMF model include the following: diesel vehicle exhausts, gasoline combustion, diesel combustion, coal tar combustion, gasoline vehicle exhausts, coal and wood (biomass) combustion, and emissions from unburnt fossil fuels. Employing the incremental lifetime cancer risk (ILCR) model, the city's cancer risk of 5.96E-05 for children and 6.60E-05 for adults were more than the satisfactory risk baseline of ILCR ≤ 10-6 and higher in adults than in Children.
Collapse
Affiliation(s)
- Rafiu Olasunkanmi Yusuf
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Toluwalope Odediran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Jamiu Adetayo Adeniran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
| | - Olusola Adedayo Adesina
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
15
|
Pal S, Basu A, Thakur RG, Balachandran S, Chaudhury S. Consumption of Pila globosa (Swainson) collected from organophosphate applied paddy fields: human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33281-33294. [PMID: 35022966 DOI: 10.1007/s11356-021-18021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Unregulated use of chlorpyrifos (CPF) and monocrotophos (MCP) in agriculture casts adverse effects on non-target freshwater mollusc, Pila globosa and humans. Levels of CPF and MCP were assessed in the paddy field from the edible foot tissue of apple snail (Pila globosa) exposed to low (1.5 ml l-1 water) and high (2.5 ml l-1 water) agricultural doses for 48 h to determine human health risk associated with consumption of tissue. CPF and MCP were extracted by liquid-liquid extraction and analysed by QuEChERS method using GC-MS/MS. For low and high concentrations of CPF exposure, the pesticide residue levels in the paddy field water ranged from 4.43 to 1.08 and 5.13 to 1.53 µg l-1, respectively, whereas, for low and high concentrations of MCP exposure, the residue levels in water ranged from 16.43 to 5.78 and 31.41 to 9. 27 µg l-1, respectively, for 3-48 h. In the foot tissue, residues ranged from 4.36 to 15.54 µg kg-1 for low-dose CPF, 7.1 to 18.05 µg kg-1for high-dose CPF and from 5.28 to 12.3 µg kg-1 and 8.94 to 18.21 µg kg-1 for low and high dose of MCP, respectively, during 3 to 48 h of exposure. Pesticides in the tissue were lower than the recommended maximum residue limits. Estimated health risk for adults and children revealed that the estimated daily intake values did not exceed the threshold values of acceptable daily intake. Non-carcinogenic and carcinogenic health effects were less than the safe value of 1.0 and 1 × 10-6, respectively, suggesting that CPF and MCP residues from ingestion of apple snail posed low risks to both children and adults. This preliminary result suggests regular monitoring of pesticides residues in Pila globosa collected from the paddy field of India.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, West Bengal, India, 731235
| | - Aman Basu
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, West Bengal, India, 731235
- Department of Biology, University of York, Toronto, Canada
| | - Richik Ghosh Thakur
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, West Bengal, India, 731235
| | - Srinivasan Balachandran
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, West Bengal, India, 731235.
| | - Shibani Chaudhury
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, West Bengal, India, 731235.
| |
Collapse
|
16
|
Stojić A, Jovanović G, Stanišić S, Romanić SH, Šoštarić A, Udovičić V, Perišić M, Milićević T. The PM 2.5-bound polycyclic aromatic hydrocarbon behavior in indoor and outdoor environments, part II: Explainable prediction of benzo[a]pyrene levels. CHEMOSPHERE 2022; 289:133154. [PMID: 34871609 DOI: 10.1016/j.chemosphere.2021.133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Among the polycyclic aromatic hydrocarbons (PAH), benzo[a]pyrene (B[a]P) has been considered more relevant than other species when estimating the potential exposure-related health effects and has been recognized as a marker of carcinogenic potency of air pollutant mixture. The current understanding of the factors which govern non-linear behavior of B[a]P and associated pollutants and environmental processes is insufficient and further research has to rely on the advanced analytical approach which averts the assumptions and avoids simplifications required by linear modeling methods. For the purpose of this study, we employed eXtreme Gradient Boosting (XGBoost), SHapley Additive exPlanations (SHAP) attribution method, and SHAP value fuzzy clustering to investigate the concentrations of inorganic gaseous pollutants, radon, PM2.5 and particle constituents including trace metals, ions, 16 US EPA priority PM2.5-bound PAHs and 31 meteorological variables, as key factors which shape indoor and outdoor PM2.5-bound B[a]P distribution in a university building located in the urban area of Belgrade (Serbia). According to the results, the indoor and outdoor B[a]P levels were shown to be highly correlated and mostly influenced by the concentrations of Chry, B[b]F, CO, B[a]A, I[cd]P, B[k]F, Flt, D[ah]A, Pyr, B[ghi]P, Cr, As, and PM2.5 in both indoor and outdoor environments. Besides, high B[a]P concentration events were recorded during the periods of low ambient temperature (<12 °C), unstable weather conditions with precipitation and increased soil humidity.
Collapse
Affiliation(s)
- Andreja Stojić
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 118 Pregrevica Street, 11000, Belgrade, Serbia; Singidunum University, 32 Danijelova Street, 11000, Belgrade, Serbia
| | - Gordana Jovanović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 118 Pregrevica Street, 11000, Belgrade, Serbia; Singidunum University, 32 Danijelova Street, 11000, Belgrade, Serbia
| | - Svetlana Stanišić
- Singidunum University, 32 Danijelova Street, 11000, Belgrade, Serbia.
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, 2 Ksaverska Cesta Street, PO Box 291, 10001, Zagreb, Croatia
| | - Andrej Šoštarić
- Institute of Public Health Belgrade, 54 Despota Stefana Street, 11000, Belgrade, Serbia
| | - Vladimir Udovičić
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 118 Pregrevica Street, 11000, Belgrade, Serbia
| | - Mirjana Perišić
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 118 Pregrevica Street, 11000, Belgrade, Serbia; Singidunum University, 32 Danijelova Street, 11000, Belgrade, Serbia
| | - Tijana Milićević
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 118 Pregrevica Street, 11000, Belgrade, Serbia
| |
Collapse
|
17
|
Mahdad F, Bakhtiari AR, Moeinaddini M, Charlesworth S. Seasonal occurrence, source apportionment, and cancer risk assessment of PAHs in the second largest international holy metropolitan: Mashhad, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13279-13291. [PMID: 34585348 DOI: 10.1007/s11356-021-16336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Street dust resuspension is one of the main sources of particulate matter with impacts on air quality, health, and climate. This research was aimed to determine the concentration, source, and health risk of polycyclic aromatic hydrocarbons (PAHs) in street dust of Mashhad city. To this end, USEPA-regulated 16 PAHs were measured in 84 dust samples using gas chromatography coupled to mass spectrometry (GC-MS). The source of Σ16PAHs was identified using diagnostic ratios (DRs), positive matrix factorization (PMF), and principal component analysis (PCA). The measured Σ16PAHs demonstrated different spatial concentrations (from 1,005 to 9,138.96 μg kg-1) and showed higher levels in summer (1,206.21-9,138.96 μg kg-1), although 4-ring PAHs exhibited maximum levels in both summer and winter. The findings revealed that the dust-deposited PAHs are predominantly emitted through combustion of fossil fuels (such as diesel and gasoline) and natural gas. The total incremental lifetime cancer risk (ILCR) was assessed by considering three possible exposure routes separately for children and adults and calculated carcinogenic risk values of 2.24E-06 and 2.14E-06, respectively. ILCR is above the baseline value (1.0E-06) for children and adults in both seasons.
Collapse
Affiliation(s)
- Faezeh Mahdad
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
- Tarbiat Modares University, Tehran, Iran.
| | - Mazaher Moeinaddini
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
18
|
Gogoi D, Sazid A, Bora J, Deka P, Balachandran S, Hoque RR. Particulate matter exposure in biomass-burning homes of different communities of Brahmaputra Valley. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:856. [PMID: 34853951 DOI: 10.1007/s10661-021-09624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning for cooking prevalent in the developing countries is an issue which has been a concern for the past several decades for the noxious emissions and subsequent effects on the health of women and children due to the exposure of particulate matter (PM) and other gases. In this study, PM (PM1, PM2.5, and PM10) were measured in biomass-burning households for different communities of Brahmaputra Valley region northeast India by a 31-channel aerosol spectrometer. The levels of emission of PM in the case of different community households were found to be significantly different. Also, the emission characteristics of different cooking time of the day were found to be different across communities. The emission levels in the biomass-burning households were compared with emission in household using "clean" LPG fuel, and it was found that the biomass fuels emitted 10-12 times more PM2.5 and 6-7 times more PM10. The number densities of the emission were found to be more with smaller sizes of particulates which could explain why such biomass-burning emissions can pose with greater health risks. The exposure doses were calculated and were found to be about three times higher in biomass-burning houses than "clean" LPG fuel. It is important to note that the exposure from biomass burning while cooking has a gender perspective. The woman of the house generally takes care of the activities in the kitchen and get exposed to the noxious PM and the gases. Children often accompany their mothers and face the same fate.
Collapse
Affiliation(s)
- Dharitri Gogoi
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Abdullah Sazid
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Jayanta Bora
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | | | - Raza R Hoque
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
19
|
Adeniran JA, Abdulraheem MO, Ameen HA, Odediran ET, Yusuf MNO. Source identification and health risk assessments of polycyclic aromatic hydrocarbons in settled dusts from different population density areas of Ilorin, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:777. [PMID: 34748100 DOI: 10.1007/s10661-021-09566-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in recent times on account of their reasonably high environmental burden and extreme toxicity. Samples of indoor dusts were obtained daily over a period of 2 weeks from 10 residences located within low, medium, and high density residential areas of Ilorin City. The concentration levels, potential sources, and cancer health risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were investigated using gas chromatography/mass spectrometry. PAHs total concentrations varied from 3.95 ± 0.19 to 8.70 ± 0.43 μg/g with arithmetic mean of 6.09 ± 0.46 μg/g. Fluoranthene was the most dominant PAHs congener. High molecular weight (HMW) PAHs (4-6 rings) were the most prevalent PAHs and were responsible for 79.29% of total PAHs in sampled residences. Chrysene (Chry) was the most abundant compound among the 7 carcinogenic PAHs (CPAHs). Moreover, diagnostic ratios and positive matrix factorization (PMF) employed to apportion PAHs suggested that indoor dusts originated from indoor activities and infiltrating outdoor air pollutants. Diagnostic ratios revealed that PAHs are from mixed sources which include coal/wood combustion, non-traffic and traffic emissions, petroleum, petrogenic (gasoline), and petroleum combustion. Similarly, positive matrix factorization (PMF) model suggested five sources (factors) were responsible for PAHs in indoor dusts comprised of petroleum combustion and traffic emissions (60.05%), wood and biomass combustion emissions (20.84%), smoke from cooking, incense burning and tobacco (4.17%), gasoline combustion from non-traffic sources (13.89%), and emissions from coal burning and electronic devices (1.05%). The incremental lifetime carcinogenic risks (ILCR) of PAHs in adults and children estimated by applying benzo(a)pyrene (BaP) equivalent were within the satisfactory risk limits in Ilorin. Indoor PAHs emissions in Ilorin residences could be monitored and controlled by using data provided in this study.
Collapse
Affiliation(s)
- Jamiu Adetayo Adeniran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
| | | | - Hafsat Abolore Ameen
- Department of Epidemiology and Community Health, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Toluwalope Odediran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Muhammad-Najeeb O Yusuf
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|