1
|
Sun R, Cao F, Dai S, Shan B, Qi C, Xu Z, Li P, Liu Y, Zheng W, Chen J. Atmospheric Mercury Isotope Shifts in Response to Mercury Emissions from Underground Coal Fires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37167064 DOI: 10.1021/acs.est.2c08637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pollutant emissions from coal fires have caused serious concerns in major coal-producing countries. Great efforts have been devoted to suppressing them in China, notably at the notorious Wuda Coalfield in Inner Mongolia. Recent surveys revealed that while fires in this coalfield have been nearly extinguished near the surface, they persist underground. However, the impacts of Hg volatilized from underground coal fires remain unclear. Here, we measured concentrations and isotope compositions of atmospheric Hg in both gaseous and particulate phases at an urban site near the Wuda Coalfield. The atmospheric Hg displayed strong seasonality in terms of both Hg concentrations (5-7-fold higher in fall than in winter) and isotope compositions. Combining characteristic isotope compositions of potential Hg sources and air mass trajectories, we conclude that underground coal fires were still emitting large amounts of Hg into the atmosphere that have been transported to the adjacent urban area in the prevailing downwind direction. The other local anthropogenic Hg emissions were only evident in the urban atmosphere when the arriving air masses did not pass directly through the coalfield. Our study demonstrates that atmospheric Hg isotope measurement is a useful tool for detecting concealed underground coal fires.
Collapse
Affiliation(s)
- Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fei Cao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shifeng Dai
- College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Bing Shan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cuicui Qi
- Anhui Academy of Eco-environmental Science Research, Hefei 230071, China
| | - Zhanjie Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pengfei Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yi Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Han D, Wu Q, Wen M, Tang Y, Li G, Ren Y, Cui Y, Li Z, Shi J, Zhang Q, Yin X, Wang S. Isotopic Fractionation Characteristics of Speciated Mercury from Local Biomass Combustion in the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4775-4783. [PMID: 36926863 DOI: 10.1021/acs.est.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the Third Pole of the world, the Tibetan Plateau (TP) is sensitive to anthropogenic influences. Biomass combustion is one of the most important anthropogenic sources of mercury (Hg) emissions in the TP. However, due to the lack of knowledge about Hg emission characteristics and activity levels in the plateau, atmospheric Hg emissions from biomass combustion in the TP are under large uncertainties. Here, based on pilot-scale experiments, we found that particle-bound mercury (PBM; mean of 83.1-87.7 ng/m3) occupied 17.93-49.31% of the total emitted Hg and the PBM δ202Hg values (average -1.65‰ to -0.77‰) were significantly higher than those of the corresponding feeding biomass. The Δ200Hg values of total gaseous mercury and PBM were more negative (-0.08‰ to -0.05‰) than other anthropogenic emissions, providing unique isotopic fingerprints for this sector. Together with the investigated local activity levels, Hg emissions from biomass combustion reached 402 ± 74 kg/a, which were dozens of times higher than previous estimates. The emissions were characterized by conspicuous spatial heterogeneity, concentrated in the northern and central TP. Specialized Hg emissions and the Hg isotope fingerprint of local biomass combustion can aid in evaluating the influence of this sector on the fragile ecosystems of the TP.
Collapse
Affiliation(s)
- Deming Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310000 Hangzhou China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, 100084 Beijing, China
| | - Minneng Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Guoliang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yujia Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yuying Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Zhijian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310000 Hangzhou China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, 100084 Beijing, China
| |
Collapse
|
3
|
Gao L, Liu K, Guo S, Liang L, Li H. Release characteristics of elemental mercury during low calorific value coal combustion. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211961. [PMID: 35620004 PMCID: PMC9128858 DOI: 10.1098/rsos.211961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
The dynamic release characteristics of Hg0 during low calorific value coal combustion were investigated in a combining laboratory-scale furnace coupled with atomic fluorescence spectroscopy. The results show that the sulfur has an inhibitory effect on the homogeneous oxidation of Hg0 in flue gas. The instant intensity of Hg0 release increases with increasing temperature while the amount of Hg0 release gradually decreases with increasing temperature. Compared with that under air, the instant intensity of Hg0 release under O2/CO2 atmosphere increases to some extent with a lower decreasing rate of Hg0 release peak. The release ratio of elemental mercury (Hg) from Yuwu (YW) and Qinxin (QX) coal increases while that from Yonghao (YH) coal decreases under O2/CO2 atmosphere. In the range of 800-1100°C, the release rate of Hg reaches more than 96% under the residence time of 50 s.
Collapse
Affiliation(s)
- Libing Gao
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| | - Kai Liu
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| | - Shaoqing Guo
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| | - Lei Liang
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| | - Hongyan Li
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| |
Collapse
|