1
|
Stark AAP, Corcini CD, Oliveras MY, Bianchini A, Acosta IB, Costa PG, da Silva Zani G, Junior ASV, França RT. Trachemys dorbigni as a metal(loid) bioindicator: a study in rural and urban areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1207. [PMID: 39556151 DOI: 10.1007/s10661-024-13384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Metals and metalloids are persistent environmental pollutants with the potential for bioaccumulation, posing significant health risks, including genotoxicity. These contaminants are prevalent in industrial and agricultural runoff. This study utilizes Trachemys dorbigni, an aquatic reptile, as a bioindicator to assess environmental contamination by metals and metalloids in both rural and urban settings in Pelotas, Rio Grande do Sul, Brazil. We captured specimens using pit-type traps with barriers (fyke nets), dividing them into two groups: 15 from a rural area and 15 from an urban area. Each animal underwent physical evaluations, and biometric data (weight, total carapace length and width) were recorded to calculate body condition indices. Biological samples were collected via manual restraint, with blood samples drawn from the supraoccipital venous sinus and linear carapace fragments obtained through manual scraping. Water samples from each location were also analyzed. Using atomic absorption spectrophotometry, concentrations of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were measured in the water, carapace fragments, and blood samples. Cellular damage was assessed through flow cytometry and microscopy, examining erythrocyte disruption, reactive oxygen species, membrane fluidity, DNA fragmentation and micronucleus formation. Urban area samples showed concentrations of As, Cd, Cu, Fe, Hg and Ni exceeding national standards set by the Conselho Nacional do Meio Ambiente (CONAMA), with rural areas also showing elevated levels of As, Cd, Hg and Ni. Biometric analysis revealed that rural reptiles had significantly higher weight and carapace dimensions, whereas urban tortoises displayed a higher body condition index and significantly elevated blood levels of Al, Cr, Ni, Pb and Zn. The urban tortoises also exhibited higher concentrations of all tested metal(loid) in carapace samples (p < 0.05) and more pronounced cellular damage (p < 0.05), highlighting severe bioaccumulation and associated deleterious effects. Elevated reactive oxygen species levels were noted in rural specimens. This study underscores the impact of water degradation and metal(loid) pollution in urban environments on T. dorbigni, suggesting that carapace tissue analysis can serve as a chronic exposure indicator to these harmful contaminants.
Collapse
Affiliation(s)
- Amanda Andersson Pereira Stark
- Postgraduate Program in Veterinary Medicine (Veterinary Medical Clinic), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Carine Dahl Corcini
- Department of Animal Reproduction and Pathology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Izani Bonel Acosta
- Postgraduate Program in Veterinary Medicine (Animal Reproduction and Pathology), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physical, Chemical and Geological Oceanography (Aquatic Toxicology), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gabriel da Silva Zani
- Postgraduate Program in Veterinary Medicine (One Health), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | | | | |
Collapse
|
2
|
Cui W, Ji H, Cai Z, Li Q, Yu D, Luo H, Zhang J, Wang Z. A green and facile direct ink writing technique for preparation calibration standards in laser ablation inductively coupled plasma mass spectrometry analysis. Anal Chim Acta 2024; 1309:342670. [PMID: 38772663 DOI: 10.1016/j.aca.2024.342670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful tool for microanalysis of solid materials. Nevertheless, one limitation of the method is the lack of well-characterized homogeneous reference materials (RMs), such as BaF2 crystal and BaCO3 ceramics samples, making direct quantification difficult. This work presents a novel Direct Ink Writing (DIW) method to produce RMs for microanalysis. The Mg, Cr, Fe, Co, Ni, Cu, Y, Mo, Pr, Gd, Dy, Ho, Er, Tm, Yb, and Lu solutions were gravimetrically doped into BaCO3 by mixing with the dispersant and then cured with DIW techniques. (94) RESULTS: BaCO3 powder was combined with a dopant analyte to produce a printable slurry, aided by the use of a dispersant and cellulose. The resulting mixture was then printed using DIW equipment. The retention rates of the doped elements were investigated by internal and external standard method, and the results showed that they were completely dispersed in the solid material. After further optimization, it was found that there was no significant heterogeneity among the printed samples. LA-ICP-MS was used to analyze printed samples, to evaluate micro-scale homogeneity. The mass concentration of the doped element was determined by ICP-MS, verify its move closer to nominal value. Compared with the traditional reference materials preparation methods, the DIW technology greatly increased the sample homogeneity and the accuracy of the desired concentration. (132) SIGNIFICANCE: As far as we know, there are few reports on the application of DIW method to prepare calibration standards. In brief, it is proved that the proposed method of preparing calibration standard by DIW technique to quantify analytes is valid and robust. This procedure provides great potential for LA-ICP-MS in-situ analysis in the field of well-prepared products, such as ceramic and crystal samples.(63).
Collapse
Affiliation(s)
- Wenxin Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Haohao Ji
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhaoqing Cai
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haiyan Luo
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jian Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Zheng Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Valverde I, Defosseux I, Le Bot T, Jouvion G, Le Barzic C, Arné P, Gasparini J. Effect of urbanization on the trace element concentrations in the kidney, liver and spines of the European hedgehog (Erinaceus europaeus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169944. [PMID: 38199357 DOI: 10.1016/j.scitotenv.2024.169944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Urbanized environments may be suitable for some wild species, like the European hedgehog (Erinaceus europaeus). However, the (sub)urban areas are source of several pollutants, such as trace elements (TEs). The main objective of our study is to investigate the role of the European hedgehog as a potential bioindicator species for seven TEs (As, Cd, Cr, Cu, Ni, Pb, Zn) in a big urban agglomeration. We analyzed the kidney, liver and spines of 50 European hedgehogs. Moreover, we carried out geographic information system (GIS) with 31 individuals to examine the effects of human pressure (human density and urbanization) on TE concentrations in tissues. We detected the 7 TEs in all tissues. Trace elements, especially Pb and Zn, in the liver, kidney and spines seem to be influenced by human density and urbanization.
Collapse
Affiliation(s)
- Irene Valverde
- Dynamyc Research Group, Université Paris Est Créteil, École nationale vétérinaire d'Alfort, USC Anses, 94700 Maisons-Alfort, France.
| | - Isabelle Defosseux
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris, 75005 Paris, France
| | - Tanguy Le Bot
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris, 75005 Paris, France
| | - Grégory Jouvion
- Dynamyc Research Group, Université Paris Est Créteil, École nationale vétérinaire d'Alfort, USC Anses, 94700 Maisons-Alfort, France; École nationale vétérinaire d'Alfort, Histology and Pathology Unit, 94700 Maisons-Alfort, France
| | - Cécile Le Barzic
- École Nationale Vétérinaire d'Alfort, Centre Hospitalier Universitaire Vétérinaire de la Faune Sauvage (Chuv-FS), 94700 Maisons-Alfort, France
| | - Pascal Arné
- Dynamyc Research Group, Université Paris Est Créteil, École nationale vétérinaire d'Alfort, USC Anses, 94700 Maisons-Alfort, France; École Nationale Vétérinaire d'Alfort, Centre Hospitalier Universitaire Vétérinaire de la Faune Sauvage (Chuv-FS), 94700 Maisons-Alfort, France
| | - Julien Gasparini
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris, 75005 Paris, France
| |
Collapse
|
4
|
Nzabanita D, Mulder RA, Lettoof DC, Grist S, Hampton JO, Hufschmid J, Nugegoda D. Interactions Between Heavy Metal Exposure and Blood Biochemistry in an Urban Population of the Black Swan (Cygnus atratus) in Australia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:178-186. [PMID: 38383776 PMCID: PMC10904524 DOI: 10.1007/s00244-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
There is growing recognition of the threat posed to wildlife by pollutants. Waterbirds are robust bioindicators of ecosystem health, and metal toxicity is a threat to these species in waterways worldwide. Urban waterbirds are likely to be at the highest risk of heavy metal exposure, but this issue has not been widely explored in Australia. Our aim was to estimate contemporary heavy metal exposure in a sedentary urban waterbird population: black swans (Cygnus atratus) inhabiting an inner-city wetland in one of Australia's largest cities, Melbourne. To investigate the physiological implications of legacy heavy metal exposure in these birds, we quantified blood biochemistry profiles and examined their relationships with metal concentrations in feathers. We caught 15 swans in 2021 and took feather samples to measure the concentration of eight heavy metals (chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), and mercury (Hg)), and blood samples to measure the concentration of 13 plasma analytes. Multivariate regression analysis revealed few associations between heavy metals and biochemistry markers, and no differences between sexes or age classes. This study presents a baseline dataset of these contaminants and blood biochemical profiles of swans at this wetland that can be used for future monitoring and is an important step toward a better understanding of the threat posed by heavy metals to Australian urban waterbirds.
Collapse
Affiliation(s)
- Damien Nzabanita
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC, 3083, Australia
| | - Raoul A Mulder
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Damian C Lettoof
- Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat, WA, 6014, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Stephen Grist
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC, 3083, Australia
| | - Jordan O Hampton
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia.
- Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Jasmin Hufschmid
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Dayanthi Nugegoda
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC, 3083, Australia
| |
Collapse
|
5
|
Lettoof DC, Nguyen TV, Richmond WR, Nice HE, Gagnon MM, Beale DJ. Bioaccumulation and metabolic impact of environmental PFAS residue on wild-caught urban wetland tiger snakes (Notechis scutatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165260. [PMID: 37400030 DOI: 10.1016/j.scitotenv.2023.165260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
PFAS contamination of urban waters is widespread but understanding the biological impact of its accumulation is limited to humans and common ecotoxicological model organisms. Here, we combine PFAS exposure and bioaccumulation patterns with whole organism responses and omics-based ecosurveillance methods to investigate the potential impacts of PFAS on a top predator of wetlands, the tiger snake (Notechis scutatus). Tiger snakes (18 male and 17 female) were collected from four wetlands with varying PFAS chemical profiles and concentrations in Perth, Western Australia. Tiger snake livers were tested for 28 known PFAS compounds, and Σ28PFAS in liver tissues ranged between 322 ± 193 μg/kg at the most contaminated site to 1.31 ± 0.86 μg/kg at the least contaminated site. The dominant PFAS compound detected in liver tissues was PFOS. Lower body condition was associated with higher liver PFAS, and male snakes showed signs of high bioaccumulation whereas females showed signs of maternal offloading. Biochemical profiles of snake muscle, fat (adipose tissue), and gonads were analysed using a combination of liquid chromatography triple quadrupole (QqQ) and quadrupole time-of-flight (QToF) mass spectrometry methodologies. Elevated PFAS was associated with enriched energy production and maintenance pathways in the muscle, and had weak associations with energy-related lipids in the fat tissue, and lipids associated with cellular genesis and spermatogenesis in the gonads. These findings demonstrate the bioavailability of urban wetland PFAS in higher-order reptilian predators and suggest a negative impact on snake health and metabolic processes. This research expands on omics-based ecosurveillance tools for informing mechanistic toxicology and contributes to our understanding of the impact of PFAS residue on wildlife health to improve risk management and regulation.
Collapse
Affiliation(s)
- D C Lettoof
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Floreat, WA 6014, Australia.
| | - T V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Viet Nam
| | - W R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - H E Nice
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - M M Gagnon
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia
| | - D J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| |
Collapse
|
6
|
Morales-Zamudio L, Fierro-Cabo A, Rahman MS, Dominguez-Crespo MA. Metal contents in house geckos (Squamata: Gekkonidae) from industrial and urban areas of southern Tamaulipas, Mexico and western Andalucía, Spain, may reflect airborne metal pollution. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:103-118. [PMID: 36734348 DOI: 10.1080/15287394.2023.2170941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
House geckos share living quarters with humans in the tropical and subtropical regions inhabited by these reptiles. Gecko behavior, biological traits, continuous exposure to suspended particulate matter 0 µm in diameter (PM10) and dust, as well as status as exotic species, motivated the choice of these species to examine environmental exposure to ambient air pollutants, in particular metals, and subsequent accumulation in these organisms. One part of the study was conducted in Tamaulipas (Mexico) where Hemydactylus frenatus is abundant in urban and industrial environments, the other part was conducted in Andalucia (Spain) where Tarentola mauritanica is found in similar environments. Adult geckos were collected on buildings in locations affected by various air pollution sources. For both species, higher metal contents were observed in whole-body (including digestive tracts) analysis and were markedly different between collection sites. Contents in tails, digestive tracts, and carcasses without digestive tracts were not correlated. Based on contamination factor values, bioaccumulation in H. frenatus tissues occurred for 12 of the 15 metals analyzed. Data suggest that H. frenatus might serve as a biomonitor for Cu, Ni, Pb, Cr, Li, and V, whereas T. mauritanica might be a biomonitor for Cu, Ni, Pb, and Cr. To our knowledge, metal contents for H. frenatus are reported here for the first time. House gecko data could be integrated into a highly representative monitoring system and health risk assessments related to air quality in residential areas.
Collapse
Affiliation(s)
- Luisiana Morales-Zamudio
- Investigación y Posgrado, Instituto Politécnico Nacional, CICATA-Altamira, Altamira, Tamaulipas, Mexico
| | - Alejandro Fierro-Cabo
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Miguel Antonio Dominguez-Crespo
- Investigación y Posgrado, Instituto Politécnico Nacional, CICATA-Altamira, Altamira, Tamaulipas, Mexico
- Departamento de Materiales Nanoestructurados, Instituto Politécnico Nacional, San Agustín Tlaxiaca, Hidalgo, Mexico
| |
Collapse
|
7
|
Lemaire J, Brischoux F, Marquis O, Mangione R, Caut S, Brault-Favrou M, Churlaud C, Bustamante P. Relationships between stable isotopes and trace element concentrations in the crocodilian community of French Guiana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155846. [PMID: 35561901 DOI: 10.1016/j.scitotenv.2022.155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Oliver Marquis
- Muséum national d'Histoire naturelle, Parc Zoologique de Paris, 53 avenue de Saint Maurice, 75012 Paris, France
| | - Rosanna Mangione
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservation de La Biodiversidad - Estacion Biologica de Doñana - C/Americo Vespucio, S/n (Isla de La Cartuja), E-41092 Sevilla, Spain; ANIMAVEG Conservation, 58 Avenue Du Président Salvador Allende, F-94800 Villejuif, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
8
|
Lettoof DC, Cornelis J, Jolly CJ, Aubret F, Gagnon MM, Hyndman TH, Barton DP, Bateman PW. Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118674. [PMID: 34906591 DOI: 10.1016/j.envpol.2021.118674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators-as bioindicators-can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation-landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Collapse
Affiliation(s)
- Damian C Lettoof
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| | - Jari Cornelis
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Christopher J Jolly
- Institute of Land, Water and Society, School of Environmental Science, Charles Sturt University, Albury, NSW, 2640, Australia; Australian Museum Research Institute, Australian Museum, Sydney, NSW, 2010, Australia
| | - Fabien Aubret
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia; Station D'Ecologie Theorique et Experimentale Du CNRS a Moulis, UMR 5321 CNRS, 09200, Moulis, France
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Diane P Barton
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Philip W Bateman
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
9
|
Lettoof DC, Thomson VA, Cornelis J, Bateman PW, Aubret F, Gagnon MM, von Takach B. Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow. PLoS One 2021; 16:e0259124. [PMID: 34714831 PMCID: PMC8555784 DOI: 10.1371/journal.pone.0259124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.
Collapse
Affiliation(s)
- Damian C. Lettoof
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Vicki A. Thomson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jari Cornelis
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Philip W. Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Marthe M. Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
10
|
Credo J, Chandos A, Checinski C, von Hippel FA, Ingram JC. Sample preparation method for metal(loid) contaminant quantitation in rodent hair collected in Yuma County, Arizona. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:522. [PMID: 34313833 PMCID: PMC8316233 DOI: 10.1007/s10661-021-09292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Yuma County, Arizona, is a large agricultural hub of the USA located in the southwestern corner of Arizona on the USA-Mexico border. Year-round use of agrichemicals at a massive scale along with the influx of aquatic contaminants in the Colorado River led to significant levels of environmental pollution and hence exposure risks for people and wildlife. Although hair is a recognized biomarker for metal exposure, there is no universal hair preparation protocol. This study evaluated two digestion methods for metal quantitation using inductively coupled plasma-mass spectrometry (ICP-MS) and three methods for mercury quantitation using cold vapor-atomic absorption spectroscopy (CV-AAS), both employing certified reference materials. The "overnight" and "heating" digestion methods were suitable for ICP-MS, while only the heating method was suitable for CV-AAS. These validated methods will be useful for a variety of human and wildlife assessments of toxic metal(loid) exposure.
Collapse
Affiliation(s)
- Jonathan Credo
- College of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Amy Chandos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Camilla Checinski
- Department of Chemistry & Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Frank A von Hippel
- Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health , University of Arizona, Tucson, AZ, USA
| | - Jani C Ingram
- Department of Chemistry & Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|