1
|
Brown LM, Thornton SF, Baú D. Enhancing in situ biodegradation in groundwater using pump and treat remediation: a proof of concept and modelling analysis of controlling variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27356-27374. [PMID: 38512569 DOI: 10.1007/s11356-024-32662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
A remediation approach which uses pump and treatment (PAT) to enhance the biodegradation of organic contaminants by increasing dispersive mixing between plumes and groundwater was evaluated for a phenol-contaminated aquifer, using a reactive transport model which simulates kinetic reactions between an electron donor (ED) in the plume and electron acceptor (EA) in the groundwater. The influence of system design and operation was examined in six modelling scenarios. Injection or extraction of groundwater increases biodegradation above no action and the location, pumping rate, and distance between well(s) are important variables which influence biodegradation. An increase in pumping rate, distance of the wells from the plume centreline, and changing the flow direction increase dispersive mixing between the plume and groundwater. This increases plume spreading and the plume fringe interface, providing a greater flux of dissolved EAs for biodegradation. In general, injection of groundwater containing natural EAs enhances biodegradation more than extraction. The enhancement of biodegradation is sensitive to the relative fluxes of ED and EA, as controlled by the arrangement of the wells. In the best performing scenario, biodegradation was enhanced by 128%, compared with no action.
Collapse
Affiliation(s)
- Luther M Brown
- Groundwater Protection and Restoration Group, Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Steven F Thornton
- Groundwater Protection and Restoration Group, Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Domenico Baú
- Groundwater Protection and Restoration Group, Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
2
|
Kinsela AS, Payne TE, Bligh MW, Vázquez-Campos X, Wilkins MR, Comarmond MJ, Rowling B, Waite TD. Contaminant release, mixing and microbial fluctuations initiated by infiltrating water within a replica field-scale legacy radioactive waste trench. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158241. [PMID: 36007652 DOI: 10.1016/j.scitotenv.2022.158241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Numerous legacy near-surface radioactive waste sites dating from the mid 20th century have yet to be remediated and present a global contamination concern. Typically, there is insufficient understanding of contaminant release and redistribution, with invasive investigations often impractical due to the risk of disturbing the often significantly radiotoxic contaminants. Consequently, a replica waste trench (~5.4 m3), constructed adjacent to a legacy radioactive waste site (Little Forest Legacy Site, LFLS), was used to assist our understanding of the release and mixing processes of neodymium (Nd) - a chemical analogue for plutonium(III) and americium(III), two significant radionuclides in many contaminated environments. In order to clarify the behaviour of contaminants released from buried objects such as waste containers, a steel drum, representative of the hundreds of buried drums within the LFLS, was placed within the trench. Dissolved neodymium nitrate was introduced as a point-source contaminant to the base of the trench, outside the steel drum. Hydrologic conditions were manipulated to simulate natural rainfall intensities with dissolved lithium bromide added as a tracer. Neodymium was primarily retained both at its point of release at the bottom of the trench (>97 %) as well as at a steel container corrosion point, simulated through the emplacement of steel wool. However, over the 8-month field experiment, advective mixing initiated by surface water intrusions rapidly redistributed a small proportion of Nd to shallower waters (~1.5-1.7 %), as well as throughout the buried steel drum. Suspended particulate forms of Nd (>0.2 μm) were measured at all depths in the suboxic trench and were persistent across the entire study. Analyses of the microbial communities showed that their relative abundances and metabolic functions were strongly influenced by the prevailing geochemical conditions as a result of fluctuating water depths associated with rainfall events. The site representing steel corrosion exhibited divergent biogeochemical results with anomalous changes (sharp decrease) observed in both dissolved contaminant concentration as well as microbial diversity and functionality. This research demonstrates that experimental trenches provide a safe and unique method for simulating the behaviour of subsurface radioactive contaminants with results demonstrating the initial retention, partial shallow water redistribution, and stability of particulate form(s) of this radioactive analogue. These results have relevance for appropriate management and remediation strategies for the adjacent legacy site as well as for similar sites across the globe.
Collapse
Affiliation(s)
- Andrew S Kinsela
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
| | - Timothy E Payne
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Mark W Bligh
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
| | - Xabier Vázquez-Campos
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Marc R Wilkins
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - M Josick Comarmond
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Brett Rowling
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - T David Waite
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Rolston H, Hyman M, Semprini L. Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions. Biodegradation 2022; 33:349-371. [PMID: 35553282 DOI: 10.1007/s10532-022-09987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.
Collapse
|
4
|
Nicholls HCG, Rolfe SA, Mallinson HEH, Hjort M, Spence MJ, Bonte M, Thornton SF. Distribution of ETBE-degrading microorganisms and functional capability in groundwater, and implications for characterising aquifer ETBE biodegradation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1223-1238. [PMID: 34350568 PMCID: PMC8724112 DOI: 10.1007/s11356-021-15606-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Microbes in aquifers are present suspended in groundwater or attached to the aquifer sediment. Groundwater is often sampled at gasoline ether oxygenate (GEO)-impacted sites to assess the potential biodegradation of organic constituents. However, the distribution of GEO-degrading microorganisms between the groundwater and aquifer sediment must be understood to interpret this potential. In this study, the distribution of ethyl tert-butyl ether (ETBE)-degrading organisms and ETBE biodegradation potential was investigated in laboratory microcosm studies and mixed groundwater-aquifer sediment samples obtained from pumped monitoring wells at ETBE-impacted sites. ETBE biodegradation potential (as determined by quantification of the ethB gene) was detected predominantly in the attached microbial communities and was below detection limit in the groundwater communities. The copy number of ethB genes varied with borehole purge volume at the field sites. Members of the Comamonadaceae and Gammaproteobacteria families were identified as responders for ETBE biodegradation. However, the detection of the ethB gene is a more appropriate function-based indicator of ETBE biodegradation potential than taxonomic analysis of the microbial community. The study shows that a mixed groundwater-aquifer sediment (slurry) sample collected from monitoring wells after minimal purging can be used to assess the aquifer ETBE biodegradation potential at ETBE-release sites using this function-based concept.
Collapse
Affiliation(s)
- Henry C G Nicholls
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, S10 2TN, Sheffield, UK
| | - Helen E H Mallinson
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK
| | - Markus Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Michael J Spence
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
| | - Matthijs Bonte
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
- Shell Global Solutions International B.V., Rijswijk, 2288GK, The Netherlands
- Ministry of Infrastructure and Water Management, The Hague, The Netherlands
| | - Steven F Thornton
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK.
| |
Collapse
|