1
|
Chen W, Zhang L, Zhong G, Liu S, Sun Y, Zhang J, Liu Z, Wang L. Regulation of microglia inflammation and oligodendrocyte demyelination by Engeletin via the TLR4/RRP9/NF-κB pathway after spinal cord injury. Pharmacol Res 2024; 209:107448. [PMID: 39395773 DOI: 10.1016/j.phrs.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Microglia polarization is crucial for neuroinflammatory response after spinal cord injury (SCI). Small molecule compounds and hub genes play an important role in regulating microglia polarization, reducing neuroinflammatory response and oligodendrocyte demyelination after SCI. In this study, suitable data sets were used to screen hub genes, and Western blot and Immunofluorescence (IF) experiments were used to confirm the expressions of proteins related to SDAD1, RRP9 and NF-κB pathways under LPS/SCI conditions. Engeletin (ENG) reduced microglia polarization and inflammation in vivo and in vitro via the SDAD1, RRP9 or NF-κB signaling pathways. In addition, ENG binds to the membrane receptor Toll-like receptor 4 (TLR4) through small molecule-protein docking. COIP experiment and protein-protein docking revealed protein-protein interaction (PPI) between RRP9 and SDAD1. By gene knock-down (KD) / overexpression (OE) and Western blot experiments, RRP9 and SDAD1 can regulate inflammatory response through NF-κB signaling and ribosome biogenesis pathway. Western blot analysis showed that CU increased the expression of SDAD1, RRP9 and NF-κB pathway related proteins through TLR1/2, while C34 decreased the expression of SDAD1 and RRP9 proteins through TLR4. These results suggest that ENG can reduce inflammation through TLR4/RRP9(SDAD1)/NF-κB signaling pathway. In addition, we demonstrated that oligodendrocyte apoptosis and demyelination could be influenced by the regulation of microglia and tissue inflammation. In conclusion, this study found the gene Rrp9/Sdad1 and the small molecule compound ENG, which control the inflammatory response of microglia, and further explored the related mechanism of oligodendrocyte demyelination, which has important theoretical significance.
Collapse
Affiliation(s)
- Wang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Leshu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Guangdi Zhong
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Shuang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Yuxuan Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Jiayun Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China; Harbin Medical University, Nangang District, Harbin, Heilongjiang, China
| | - Zehan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China.
| | - Lichun Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Xu T, Zhang Y, Liu H, Shi X, Liu Y. BPA exposure and Se deficiency caused spleen damage in chickens by nitrification stress-TNF-α. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121994. [PMID: 39083939 DOI: 10.1016/j.jenvman.2024.121994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
With the increasing production and demand of plastic products in life, inescapable bisphenol A (BPA) exposure results in a threat to the health of organisms. Selenium (Se) is an essential trace element for living organisms. The insufficient Se intake can cause multi-tissue organ damage. In the process of production and life, the exposure of BPA is usually accompanied by Se deficiency. In this study, the models of chicken with BPA exposure and/or Se deficiency was duplicated, the status of nitrification stress, apoptosis, necroptosis, and changes in TNF-α/FADD signaling pathways in chicken spleen were examined. At the same time, nitrification stress inhibitor and TNF-α inhibitor were introduced into MSB-1 cell model tests in vitro, indicating that BPA exposure and Se deficiency up-regulated TNF-α/FADD signaling pathway through nitrification stress, inducing necroptosis and apoptosis, and heat shock protein was also involved in this process. This study provides a new control idea for healthy poultry breeding based on Se, and also provides a new reference for toxicity control of environmental pollutants.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Berköz M, Yalın S, Türkmen Ö. Protective roles of some natural and synthetic aromatase inhibitors in testicular insufficiency caused by Bisphenol A exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-15. [PMID: 38825800 DOI: 10.1080/09603123.2024.2362810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
In our study, the protective role of synthetic aromatase inhibitors anastrozole (ANS), letrozole (LTZ) and exemestane (EXM) and natural aromatase inhibitors resveratrol (RSV) and apigenin (APG) against testicular failure caused by exposure to Bisphenol A (BPA) was investigated. The epididymal sperm concentration, sperm motility and sperm morphology were determined. Oxidative stress and inflammatory response parameters were examined and histological examinations were performed in testicular tissues. Our results revealed that BPA exposure decreased serum testosterone and estrogen levels, increased FSH and LH levels (p < 0.05). BPA has been found to increase oxidative stress and inflammatory response and disrupt the histological structure. Also, BPA exposure decreased testicular weight, epididymal sperm concentration and motility, and increased abnormal sperm rate (p < 0.05). These results show that ANS, LTZ and RSV treatments reduce the BPA-induced testicular damage.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Serap Yalın
- Department of Biochemistry, Mersin University, Mersin, Turkey
| | - Ömer Türkmen
- Department of Pharmaceutical Technology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Yang R, Lu Y, Yin N, Faiola F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19156-19168. [PMID: 37978927 DOI: 10.1021/acs.est.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Y, He L, Yang Y, Cao J, Su Z, Zhang B, Guo H, Wang Z, Zhang P, Xie J, Li J, Ye J, Zha Z, Yu H, Hong A, Chen X. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130747. [PMID: 36680903 DOI: 10.1016/j.jhazmat.2023.130747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiqi Yang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Huiying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieruo Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhengang Zha
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| |
Collapse
|
6
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
7
|
Maduranga Karunarathne WAH, Choi YH, Park SR, Lee CM, Kim GY. Bisphenol A inhibits osteogenic activity and causes bone resorption via the activation of retinoic acid-related orphan receptor α. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129458. [PMID: 35780740 DOI: 10.1016/j.jhazmat.2022.129458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) has deleterious effects on bone metabolism; however, its underlying mechanism has not yet been comprehensively understood. Here, we investigated whether RORα plays an important role in BPA-induced bone resorption both in vitro and in vivo. We found that BPA (0.1-1 μM) inhibited osteogenic activity (including ALP activity and mineralization), decreased the expression levels of osteoblast markers (such as RUNX2, OSX, and ALP) in human MG-63 osteoblast-like osteosarcoma cells, and inhibited spontaneous vertebral formation in zebrafish larvae. Additionally, BPA diminished β-glycerophosphate-induced osteoblast differentiation and vertebral formation, while simultaneously downregulating the expression levels of RUNX2a, OSX, and ALP. Furthermore, molecular docking data showed that a hydroxyl group of BPA dominantly binds to the H3 (ALA70) and/or H5 (ARG107) of RORα-ligand binding domain with hydrogen bonding (ALA330 and/or ARG367 in the full length of RORα, respectively), which another hydroxyl group of BPA fits into H3, H6, and H7 elements with non-covalent interactions, resulting in the activation of RORα. However, an RORα inverse agonist potently inhibited BPA-induced anti-osteogenic activity and vertebral formation in zebrafish larvae, concomitant with inhibition of osteogenic gene expression. Overall, our findings reveal that BPA inhibits osteoblast differentiation and bone formation by activating RORα. These results suggest that BPA exposure (0.1-1 μM) can cause various bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
8
|
Zhang X, Ivantsova E, Perez-Rodriguez V, Cao F, Souders CL, Martyniuk CJ. Investigating mitochondria-immune responses in zebrafish, Danio rerio (Hamilton, 1822): A case study with the herbicide dinoseb. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109357. [PMID: 35500749 DOI: 10.1016/j.cbpc.2022.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022]
Abstract
The dinitrophenol herbicide dinoseb is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Studies in fish demonstrate impaired OXPHOS is associated with altered immune system responses and locomotor activity in fish. The objective of this study was to determine the effect of dinoseb on zebrafish (Danio rerio) during early stages of development. We measured oxygen consumption rates of embryos, transcripts related to OXPHOS, growth, and the immune system (cytokines and immune-signaling transcripts), and locomotor activity. We hypothesized that OXPHOS of fish would be impaired in vivo, leading to altered basal immune system expression and locomotor activity. Oxidative respiration assessments in embryos revealed that dinoseb decreased both mean basal respiration and oligomycin-induced ATP-linked respiration. Expression levels of cytochrome c oxidase complex IV, 3-hydroxyacyl-COA dehydrogenase and superoxide dismutase 1 were decreased in larvae following exposure to dinoseb while succinate dehydrogenase complex flavoprotein subunit A, insulin growth factor 1 (igf1) and igf2a mRNA were increased in abundance. Immune-related transcripts chemokine (C-X-C motif) ligand 1 and matrix metallopeptidase 9 (MMP-9) were decreased in expression levels while toll-like receptor 5a and 5b were increased in expression. In addition, a visual motor response test was conducted on both 6 and 7 dpf larvae to determine if dinoseb impaired locomotor activity. Dinoseb decreased locomotor activity in 7 dpf larvae but not 6 dpf. This study improves knowledge of toxicity mechanisms for dinoseb in early stages of fish development and demonstrates that mitochondrial toxicants may disrupt immune signaling in zebrafish.
Collapse
Affiliation(s)
- Xujia Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Fangjie Cao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA; Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
10
|
Liu Z, Lu Y, Zhong K, Wang C, Xu X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113382. [PMID: 35276610 DOI: 10.1016/j.ecoenv.2022.113382] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Exposure to endocrine disrupting chemicals (EDCs) may lead to dysregulated inflammatory responses, however, the detailed relationship between different EDCs and inflammation remains unclear. A systematic review and meta-analysis was conducted to evaluate the associations between four types of EDCs (bisphenol A (BPA), phthalates (PAEs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs)) and markers of inflammation and immune responses in humans. Three databases were searched, and 36 studies with a total of 22055 participants were included. The associations between EDCs and 26 inflammation-related acute phase proteins and cytokines were analyzed. The results demonstrated that exposure to BPA was positively associated with circulating levels of C-reactive protein (CRP) and interleukin (IL)-6. Exposure to PAEs was associated with elevated levels of CRP, IL-6 and IL-10. Subgroup analysis found that three PAE metabolites mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) were directly associated with a higher level of CRP, and two other PAE metabolites mono-carboxyisononyl phthalate (MCNP) and mono-3-carboxypropyl phthalate (MCPP) were positively associated with IL-6. The positive associations between PAEs and CRP, IL-6 and IL-10 were significant in the high-molecular-weight phthalate (HMWP) exposure group, not the low-molecular-weight phthalate (LMWP) exposure group. Exposure to OCPs was positively associated with CRP, IL-1β, IL-2, and IL-10. No significant association was found between PCBs and inflammatory markers. These findings demonstrate that exposure to EDCs is closely linked to dysregulated inflammatory responses. More studies should be conducted in the future to get a comprehensive view of the associations between different EDCs and inflammation, and investigations on the underlying mechanisms are needed.
Collapse
Affiliation(s)
- Zhiqin Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yao Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kunxia Zhong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Chenchen Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xi Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
11
|
Zhang SS, Liu M, Liu DN, Yang YL, Du GH, Wang YH. TLR4-IN-C34 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Downregulating TLR4/MyD88/NF-κB/NLRP3 Signaling Pathway and Reducing ROS Generation in BV2 Cells. Inflammation 2021; 45:838-850. [PMID: 34727285 DOI: 10.1007/s10753-021-01588-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
TLR4 signal activated by lipopolysaccharide (LPS) is involved in the pathological process of the central nervous system (CNS) diseases and the suppression of TLR4 signal may become an effective treatment. TLR4-IN-C34, a TLR4 inhibitor, is expected to become a candidate compound with anti-neuroinflammatory response. In the present study, the anti-neuroinflammatory effects and possible mechanism of TLR4-IN-C34 were investigated in BV2 microglia cells stimulated by LPS. The results showed that TLR4-IN-C34 decreased the levels of pro-inflammatory factors and chemokines including NO, TNF-α, IL-1β, IL-6, and MCP-1 in the supernatant of LPS-stimulated BV2 cells. Further research indicated that TLR4-IN-C34 suppressed the expression or phosphorylation levels of inflammatory proteins regarding TLR4/MyD88/NF-κB/NLRP3 signaling pathway. In addition, TLR4-IN-C34 reduced ROS production in BV2 cells after LPS treatment. In conclusion, our findings suggest that anti-neuroinflammatory activity of TLR4-IN-C34 may be interrelated to the inhibition of TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reduction of ROS generation.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ni Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Almeida TFA, Oliveira SR, Mayra da Silva J, Fernandes de Oliveira AL, de Lourdes Cardeal Z, Menezes HC, Gomes JM, Campolina-Silva GH, Oliveira CA, Macari S, Garlet GP, Alves Diniz IM, Leopoldino AM, Aparecida Silva T. Effects of high-dose bisphenol A on the mouse oral mucosa: A possible link with oral cancers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117296. [PMID: 33971473 DOI: 10.1016/j.envpol.2021.117296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.
Collapse
Affiliation(s)
| | - Sicília Rezende Oliveira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Zenilda de Lourdes Cardeal
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helvécio Costa Menezes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Messias Gomes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|