1
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
3
|
Lima LHV, da Silva FBV, Araújo PRM, Alvarez AM, Pôrto KC, do Nascimento CWA. Assessing heavy metal contamination in a Brazilian metropolis: a case study with a focus on (bio)indicators. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:481. [PMID: 38683240 DOI: 10.1007/s10661-024-12661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The continuous expansion of the global vehicle fleet poses a growing threat to environmental quality through heavy metal contamination. In this scenario, monitoring to safeguard public health in urban areas is necessary. Our study involved the collection of 36 street dust and 29 moss samples from roads of a Brazilian metropolis (Recife) with varying traffic intensities as follows: natural reserve (0 vehicles per day), low (< 15,000 vehicles per day), medium (15,000-30,000 vehicles per day), and high (> 30,000 vehicles per day). ICP-AES analysis was performed to determine the concentrations of nine potentially toxic metals (Ba, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) to assess the influence of vehicular flow on urban contamination. In the street dust samples, the mean metal concentrations (mg kg-1) exhibited the following order: Ba (503.7) > Mn (303.0) > Zn (144.4) > Cu (95.3) > Cr (56.1) > Pb (34.2) > V (28.7) > Ni (11.3) > Cd (1.5). Conversely, in the moss samples, the metal concentration order was as follows (mg kg-1): Mn (63.8) > Zn (62.5) > Ba (61.0) > Cu (17.7) > Cr (8.0) > V (7.3) > Pb (7.0) > Ni (2.9) > Cd (0.3). Roads with higher traffic volumes exhibited the highest metal enrichments in moss samples for all metals and in dust samples for Cd, Cr, Mn, Ni, and V. However, dust from low-flow roads had higher enrichments for Ba, Cu, and Zn, indicating the influential role of other traffic-related factors in metal deposition. Our findings highlight traffic flow as the predominant source of pollution in urban centers, with both street dust and moss serving as sensitive indicators of metal input attributable to vehicular traffic. These indicators offer valuable insights for urban quality monitoring and pollution control efforts.
Collapse
Affiliation(s)
- Luiz Henrique Vieira Lima
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, S/N - Dois IrmãosRecife, PE, 52171-900, Brazil.
| | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, S/N - Dois IrmãosRecife, PE, 52171-900, Brazil
| | - Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, S/N - Dois IrmãosRecife, PE, 52171-900, Brazil
| | | | - Kátia Cavalcanti Pôrto
- Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade 12 Universitária, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
4
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
5
|
Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:15735. [PMID: 37958719 PMCID: PMC10648238 DOI: 10.3390/ijms242115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Via Alfonso Borrelli 50, 00161 Rome, Italy
| |
Collapse
|
6
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Lima LHV, do Nascimento CWA, da Silva FBV, Araújo PRM. Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159750. [PMID: 36309279 DOI: 10.1016/j.scitotenv.2022.159750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution by accelerating urbanization is an emerging socio-environmental issue that poses a potential risk to human health and the environment. In this scenario, street dust is a primary source of contaminants. Here, the metal concentrations in street dust of one of the biggest Brazilian cities were assessed aiming to identify and quantify the sources of contamination. The metal bioaccessibility and estimated probabilistic (non)-carcinogenic risks to humans were also evaluated. Thirty-six dust samples were collected in the metropolitan region of Recife. Results showed that the traffic governed the distribution and accumulation of metals in street dust. Emissions from vehicles were the primary source (> 70 %) of heavy metals, except for Cd, which had a mixed origin (natural, traffic, and industrial). Moderate to heavy dust contamination by Ba, Cu, Mn, Pb, and Zn were found, with a very high potential ecological risk. The main exposure route depended on the metal. Barium, Cu, and Pb had ingestion rather than dermal contact as the main route of exposure, while inhalation and dermal contact posed the main risks to Mn and Cr, respectively. The risk for children was higher than for adults. The probabilities of unacceptable carcinogenic risk scenarios (TCRI >10-6) for children and adults were 27 and 4 %, respectively, with Cr being the most concerning metal for the health of the urban population.
Collapse
Affiliation(s)
- Luiz Henrique Vieira Lima
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | | | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | - Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
8
|
Xu Y, Peng T, Xiang Y, Liao G, Zou F, Meng X. Neurotoxicity and gene expression alterations in zebrafish larvae in response to manganese exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153778. [PMID: 35150691 DOI: 10.1016/j.scitotenv.2022.153778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is an essential trace element, but excessive exposure can damage mental, cognitive, and motor functions. Although many studies have reported the toxicity of Mn, the underlying mechanism remains unclear. Here, wild-type and/or Tg(NBT:DsRed) zebrafish embryos/larvae were exposed to different dosages of Mn to determine the effects on mortality, malformation, and hatching rates. A video tracking system was used to analyze the locomotor activities of zebrafish larvae. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay and acridine orange staining were performed to monitor cell apoptosis, while dopamine transporter and tyrosine hydroxylase (TH) expression were detected by immunohistochemical staining. Meanwhile, transcriptome sequencing of the head tissues of zebrafish larvae was performed to search for molecular targets of Mn neurotoxicity. The results showed that Mn exposure increased the mortality and malformation rates of zebrafish larvae, and significantly reduced swim distance and velocity. In addition, the proportion of apoptotic dopaminergic neurons increased, while TH expression significantly decreased. The results of transcriptome sequencing showed that a large number of differentially expressed genes associated with apoptosis and DNA damage repair were upregulated, consistent with the above results. Meanwhile, Western blot analysis showed that higher exposure level of Mn could induce activation of MAPK pathway. These data demonstrate that Mn exposure can damage dopaminergic neurons and cause apoptosis, which has detrimental effects on the motor abilities of zebrafish larvae.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xiang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
|