1
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
2
|
Lin C, Wang Y, Hu G, Yu R, Huang H. Source apportionment and transfer characteristics of Pb in a soil-rice-human system, Jiulong River Basin, southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121489. [PMID: 36958662 DOI: 10.1016/j.envpol.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The source apportionment and transfer of Pb in a paddy soil-rice-human system within the Jiulong River Basin in southeast China was investigated by analyzing (1) the chemical fractionation of Pb in paddy soils using a modified BCR four-step sequential extraction procedure, and (2) the bioaccessibility of Pb in both paddy soils and rice grains using a Simple Bioaccessibility Extraction Test method. In addition, a qualitative Pb isotopic model was used in combination with IsoSource software to quantify the contribution of potential Pb sources. The results show the enrichment of Pb in agro-ecosystems in the Jiulong River Basin. Contaminant Pb in paddy soils was mainly present in the reducible (42.9%) and the residual fractions (27.1%). The average bioaccessibility of Pb in rice grains was significantly higher than that in paddy soil, with values of 77.85% and 37.44%, respectively. Lead in paddy soils was primarily derived from agricultural (35.3%), natural (25.5%), industrial (24.5%) and coal combustion sources (14.7%), while Pb in rice grains was primarily derived from coal combustion (54.1%), agricultural (35.1%), industrial (6.0%) and natural sources (4.8%). The bioaccessible Pb was mainly derived from anthropogenic sources [agricultural (42.3% for soil and 25.3% for grain) and coal combustion sources (25.3% for soil and 59.3% for grain)]. Lead isotopic ratios are an effective tracer of Pb transfer from potential sources to rice plants and within the rice plants. Rice plants absorb Pb from the soil and the atmosphere through the roots and leaves, respectively. Most of the Pb was accumulated in roots. The integrated use of chemical fractionation, bioaccessibility and Pb isotopic data provides an effective method to study the source apportionment and transfer characteristics of Pb in paddy soil-rice-human systems.
Collapse
Affiliation(s)
- Chengqi Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China
| | - Yanyun Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China.
| |
Collapse
|
3
|
Cai X, Li X, Peng L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X, Du J, Li N, Cai S. Effects of mowing on Pb accumulation and transport in Cynodon dactylon (L.) Pers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57571-57586. [PMID: 36973620 DOI: 10.1007/s11356-023-26623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Bermudagrass is a perennial herb with the potential to remediate Pb pollution in soils, and it has mechanical resistance to shearing. However, the effects of mowing on Pb absorption and accumulation in bermudagrass are still unclear. In this study, we investigated the effects of different quantities (0, 1, 2, 4 applications) of mowing treatments under 200 mg L-1 Pb application on Pb accumulation and transport in bermudagrass and explored the related mechanisms. Compared to the Pb treatment, all of the mowing treatments greatly decreased root Pb concentration/accumulation, significantly enhanced Pb concentrations/accumulations in stubble stems and stubble leaves, and ultimately promoted Pb enrichment and transport. Of the treatments in this study, two applications of mowing best promoted Pb enrichment, and four applications of mowing best promoted Pb transport efficiency. Furthermore, mowing mediated the microdistribution and physiological patterns of Pb in bermudagrass and affected the Pb transport by changing the subcellar distribution patterns and chemical forms of Pb in various tissues. Additionally, mowing promoted the transport of all mineral elements and showed a synergistic relationship with Pb absorption and transport. The change in mineral element metabolism patterns may be an important reason why mowing promoted Pb accumulation in bermudagrass. Our study provides the first comprehensive evidence regarding mowing facilitating the absorption, accumulation and transport of Pb in bermudagrass. Moderate mowing may be an effective strategy to assist in soil Pb remediation using bermudagrass.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Nian Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shizhen Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
4
|
Hang JG, Dong JJ, Feng H, Huang JZ, Wang Z, Shen B, Nakayama SF, Kido T, Jung CR, Ma C, Sun XL. Evaluating postnatal exposure to six heavy metals in a Chinese e-waste recycling area. CHEMOSPHERE 2022; 308:136444. [PMID: 36116633 DOI: 10.1016/j.chemosphere.2022.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
This study is the first to assess postnatal exposure to heavy metals using breast milk in an electronic waste (e-waste) recycling area. From January to April 2021, 102 and 97 breastfeeding women were recruited from an e-waste recycling area and a control area, respectively. Four weeks after delivery, medical staff collected 20 mL of breast milk from each participant. The breast milk was tested for six heavy metals (lead, cadmium, chromium, arsenic, copper, and manganese) using inductively coupled plasma mass spectrometry (ICP-MS). The estimated daily intake (EDI) of infants during breastfeeding was calculated to assess the impact of postnatal exposure to heavy metals on infant health. The concentrations of chromium and lead in the breast milk were significantly higher in the e-waste recycling area than in the control area. Chromium concentrations in breast milk was 34.3%, exceeding the permissible limits set by the World Health Organization (WHO), in the e-waste recycling area, which is 16 times higher than that in the control areas. The EDIs of lead and chromium in the e-waste area were twice as those in the control area. This strongly indicates that the potential impact of postnatal exposure to lead and chromium on infant and child health in e-waste recycling areas cannot be ignored. Infants and children in e-waste recycling areas are at risk of long-term exposure to heavy metals. Therefore, ongoing health monitoring is necessary.
Collapse
Affiliation(s)
- Jin Guo Hang
- School of Medicine, and the First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou, 313000, China; Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318050, China
| | - Jing Jian Dong
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Hao Feng
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jian Zhong Huang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zheng Wang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Bin Shen
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Shoji F Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, And Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, 406040, Taiwan
| | - Chaochen Ma
- Cancer Control Center, Osaka International Cancer Institute, Osaka, 5418567, Japan
| | - Xian Liang Sun
- School of Medicine, and the First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou, 313000, China; School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China; Faculty of Health Sciences, Institute of Medical, Pharmaceutical, And Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan.
| |
Collapse
|
5
|
Akoury E, Baroud C, El Kantar S, Hassan H, Karam L. Determination of heavy metals contamination in thyme products by inductively coupled plasma mass spectrometry. Toxicol Rep 2022; 9:1962-1967. [PMID: 36518480 PMCID: PMC9742941 DOI: 10.1016/j.toxrep.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
Thyme herbs constitute a major part of the Mediterranean diet and are gaining worldwide popularity. However, their chemical contamination with toxic metals may put consumers at a health risk. The objective of this study was to assess the incidence of Arsenic (As), Cadmium (Cd), Lead (Pb) and Mercury (Hg) in thyme-containing products. Composite samples were collected twice at six-month interval. Samples were digested by microwave digestion oven and analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). 11%, 22%, and 86% of samples had unacceptable levels of As, Hg and Pb respectively according to the international standards set by Codex Alimentarius and all the samples had acceptable limits of Cd. This study highlighted the importance of monitoring and enforcing regulatory actions related to the contamination of the food chain with heavy metals.
Collapse
Affiliation(s)
- Elias Akoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Caline Baroud
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mikael, Lebanon
| | - Sally El Kantar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Hussein Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Comprehensive insight into the neurotoxic mechanisms of low dose Pb exposure in Wistar rats: Benchmark dose analysis. Chem Biol Interact 2022; 360:109932. [DOI: 10.1016/j.cbi.2022.109932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023]
|
7
|
Javorac D, Antonijević B, Anđelković M, Repić A, Bulat P, Djordjevic AB, Baralić K, Đukić-Ćosić D, Antonić T, Bulat Z. Oxidative stress, metallomics and blood toxicity after subacute low-level lead exposure in Wistar rats: Benchmark dose analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118103. [PMID: 34520949 DOI: 10.1016/j.envpol.2021.118103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Exposure to lead (Pb) is still rising concern worldwide, having in mind that even low-dose exposure can induce various harmful effects. Thus, in-depth knowledge of the targets of Pb toxicity and corresponding mechanisms is essential. In the presented study, the six groups (male Wistar rats, n = 6) received 0.1; 0.5; 1; 3; 7; 15 mg Pb/kg body weight/day for 28 days, each day by oral gavage, while the control group received distilled water only. All animals were sacrificed 24 h after the treatment, and blood was collected for the analysis of hematological, biochemical, oxidative status and essential elements levels. An external and internal dose-response relationship was performed using PROASTweb 70.1 software. The results showed that low doses of Pb affect hematological parameters and lipid profile after 28 days. The possible mechanisms at examined Pb dose levels were a decrease in SOD, O2•- and Cu and an increase in Zn levels. The dose-dependent nature of changes in cholesterol, HDL cholesterol, O2.-, SOD, AOPP in serum and hemoglobin, Fe, Zn, Cu in blood were obtained in this study. The most sensitive parameters that were alerted are Cu blood levels (BMDL5: 1.4 ng/kg b.w./day) and SOD activity (BMDL5: 0.5 μg/kg b.w./day). The presented results provide information that may be useful in further assessing the health risks of low-level Pb exposure.
Collapse
Affiliation(s)
- Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia; Health Center Kosovska Mitrovica, 38220, Kosovska Mitrovica, Serbia
| | - Aleksandra Repić
- Serbian Institute of Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia
| | - Petar Bulat
- Serbian Institute of Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Tamara Antonić
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| |
Collapse
|
8
|
Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia. TOXICS 2021; 9:toxics9100248. [PMID: 34678944 PMCID: PMC8539481 DOI: 10.3390/toxics9100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022]
Abstract
Zambia’s Kabwe mine wastes (KMWs) are responsible for contaminating the surrounding soil and dust in the Kabwe district. Unfortunately, these wastes arise from the historical mining activities of lead (Pb) and Zinc (Zn), which lacked adequate waste management strategies. As a result, potentially toxic elements (PTEs) (Pb and Zn) spread across the Kabwe district. To assess the soil pollution derived from previous mining activities, we studied topsoil samples (n = 8) from the school playground soils (SPs). In this study, the degree of contamination, geochemical partitioning, and leachability, coupled with the release and retention of Pb and Zn, were studied. The SPs were classified as extremely enriched (EF > 40) and contaminated with Pb (Igeo > 5). On average, Pb (up to 89%) and Zn (up to 69%) were bound with exchangeable, weak acid-soluble, reducible and oxidizable phases, which are considered as ’geochemically mobile’ phases in the environment. The leachates from the soils (n = 5) exceeded the Zambian standard (ZS: 190:2010) for Pb in potable drinking water (Pb < 0.01 mg/L). Furthermore, the spatial distribution of Pb and Zn showed a significant reduction in contents of Pb and Zn with the distance from the mine area.
Collapse
|