1
|
Ma Y, Liu Y, Sun J, Min P, Liu W, Li L, Yi P, Guo R, Chen J. Ecological risks of high-ammonia environment with inhibited growth of Daphnia magna: Disturbed energy metabolism and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174959. [PMID: 39059654 DOI: 10.1016/j.scitotenv.2024.174959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
High ammonia pollution is a common problem in water bodies. However, research on the mechanisms underlying the toxic effects on organisms at different nutritional levels is still insufficient. Herein, based on the environmental concentration, the toxic effects of high ammonia pollution on Daphnia magna were investigated. Overall, the feeding and filtration rates of D. magna were significantly decreased by ammonia. Growth inhibition of D. magna by ammonia was confirmed by the decreased body length. After ammonia exposure, the metabolic status of D. magna changed, the correlation network weakened, and the correlations between metabolites were disrupted. Changes occurred in metabolites primarily involved in oxidative stress, fatty acid oxidation, tricarboxylic acid cycle, and protein digestion, absorption, and synthesis, which were validated through alterations in multiple biomarkers. In addition, mitochondrial function was evaluated and was found to inhibit mitochondrial activity, which was accompanied by a decreased marker of mitochondrial activity contents and ATPase activity. Thus, the results suggested that energy metabolism and oxidative stress were involved in ammonia-induced growth toxicity. This study provides new insights into the impact of ammonia on aquatic ecological health.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiawei Sun
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Min
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Liu
- State Key Laboratory for Environmental Protection of Water Ecological Health in the Middle and Lower Reaches of the Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Lei Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Pan Yi
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Li C, Liu Z, Xu Y, Pi J, Zhang Q, Chen X, Zhan C, Hu L, Xie J, Xie Z, Deng X, Wen L, Xiao T, Li D, Li J. Silver nanoparticles exhibit ecotoxicological effects via oxidative stress, inflammation, and reproductive toxicity in Asian clam (Corbicula fluminea). CHEMOSPHERE 2024; 366:143507. [PMID: 39393582 DOI: 10.1016/j.chemosphere.2024.143507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Silver nanoparticles (AgNPs) are pervasive environmental pollutants capable of inducing toxicological impacts on benthic organisms. In this study, the effects of AgNPs on the antioxidant enzyme activities, tissue damage, inflammatory responses, and reproductive toxicity of Corbicula fluminea were investigated. C. fluminea was exposed to four concentrations of AgNPs (0, 5 mg/L, 10 mg/L, and 125 mg/L) for 48 h. The results showed that the higher concentrations of AgNPs caused severe tissue damage in multiple organs of C. fluminea, induced oxidative stress and an imbalance of the antioxidant enzyme activities (such as SOD, CAT, MDA), and increased the inflammatory immune response involving NFκB, TLR2/4, HSP70/90, IL1β, and TNFα. Notably, further transmission electron microscopy and cytological analyses revealed that AgNPs exposure induced apoptosis in the gonad tissues, resulting in significant loss and damage in the oocytes and spermatids. The present study demonstrates the ecotoxicological impacts of AgNPs on freshwater bivalves, particularly highlighting their reproductive toxicity on germ cells, signifying the potential toxic effects of heavy metal pollution on aquatic ecosystems.
Collapse
Affiliation(s)
- Chun Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiming Liu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Pi
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Qiushi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoying Chen
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Chengfeng Zhan
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Hu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Jibang Xie
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Ziyu Xie
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xinlan Deng
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Deliang Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Zargari A, Mazandarani M, Safari R, Hoseinifar H, Hedayati A. Modulation of toxic effects of ammonia on growth, pathology of liver and kidney tissues and relative expression of GH and IGF-1 Genes by CoQ 10 Supplementation in Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1711-1729. [PMID: 38878123 DOI: 10.1007/s10695-024-01365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 07/30/2024]
Abstract
Reducing the negative impact of environmental and stressful factors is a crucial step in achieving sustainable aquaculture. Therefore, a study was aimed at evaluating the impacts of Coenzyme Q10 (CoQ10) supplementation on growth, relative gene expression of Growth Hormone (GH) and Insulin-like growth factor-1 (IGF-1), liver and kidney histopathology against stress induced by ammonia in Rainbow trout (Oncorhynchus mykiss). The fish were given feed containing different levels of CoQ10 for 8 weeks: Control - CoQ10 0%, G1 - CoQ10 0.1%, G2 - CoQ10 0.5% and G3 - CoQ10 1%. At the end of the experiment, fish were exposed to ammonia stress concentration at 0.6mg/L for 24 h to assess liver and kidney tissue damage. Results showed that there was a significant activity increase in GH and IGF-1 genes due to supplementation with CoQ10 alone (p < 0.05). Gene expression for GH increased about two-fold whereas that for IGF-1 experienced a four-fold upregulation compared to controls (p < 0.05). CoQ10's-related antioxidant effects probably minimized liver and kidney cellular injuries, as significant decreases were observed in ammonia-induced mortality (p < 0.05). In summary, adding CoQ10 to the diet is a potential way to improve fish production through controlling the gene expression of GH and IGF-1, as well as making fish populations more resistant to possible future stress caused by ammonia in intensive or super-intensive aquaculture systems.
Collapse
Affiliation(s)
- Ashkan Zargari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mazandarani
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Roghieh Safari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Hoseinifar
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Zhang H, Cui L, Si P, Zhou Y, Zhang Y, Zhang Y, Kong Q. Environmentally relevant concentrations of naphthenic acids initiate intestinal injury and gut microbiota dysbiosis in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106996. [PMID: 38852546 DOI: 10.1016/j.aquatox.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Naphthenic acids (NAs) are important pollutants in marine crude oils and have obvious toxic effects on marine organisms. However, the effects of NAs on the intestine are largely unknown. Thus, we evaluated the effects of NAs exposure in the intestines of marine medaka. Fish were experimentally exposed to NAs (0.5 mg/L, 5 mg/L, and 10 mg/L) for 96 h and monitored for changes in intestinal histology, markers of oxidative stress, and intestinal microbiome responses. Significant mucosal damage, inflammation, and oxidative stress were observed in the intestines of marine medaka after exposure to NAs. In addition, significant changes in the gut microbiota were observed. Specifically, the relative abundance of Proteobacteria decreased, while that of Verrucomicrobiota increased in the high-concentration exposure group. In addition, nutrient synthesis and metabolism in the gut were affected. The results of this study contribute to a better understanding of the ecological risk of different concentrations of NAs to marine organisms. CAPSULE ABSTRACT: Changes in the gut microbial community of marine medaka (Oryzias melastigma) caused by naphthenic acids in the marine environment were investigated through the assessment of gut inflammatory factors and comprehensive analysis using 16S rDNA high-throughput sequencing. The results indicated the induction of intestinal inflammation and changes in the structural composition of the intestinal flora.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China.
| | - Lihua Cui
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Panpan Si
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Yumiao Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yu Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Youru Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China; Dongying Institute, Shandong Normal University, Dongying 257092, Shandong, PR China
| |
Collapse
|
5
|
Zhang B, Hao B, Han M, Wang X. Impacts of pyraclostrobin on intestinal health and the intestinal microbiota in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105762. [PMID: 38458673 DOI: 10.1016/j.pestbp.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
Pyraclostrobin (PYR) is a strobilurin fungicide that is commonly used in agriculture, and its use in agriculture may lead to an increase in its residue in the aquatic environment and may have a deleterious influence on the intestinal health of aquatic creatures. Here, common carp were chronically exposed to PYR (0, 0.5, or 5.0 μg/L) for 30 d to determine its effect on the physical and immunological barrier and intestinal microbiota in the intestine. PYR exposure caused significant histological changes; altered the mRNA expression levels of occludin, claudin-2, and zonula occludens-1 (ZO-1); induced oxidative stress in the common carp intestine; and increased the serum D-lactate and diamine oxidase (DAO) levels. Moreover, PYR significantly increased the protein expression levels of tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and IL-6 while decreasing the level of transforming growth factor beta (TGF-β). Further studies revealed that PYR significantly reduced lysozyme (LZM) and acid phosphatase (ACP) activities as well as complement 3 (C3) and immunoglobulin M (IgM) levels. Furthermore, PYR decreased gut microbial diversity while increasing the abundance of pathogenic bacteria such as Aeromonas and Shewanella, causing an intestinal microbial disturbances in common carp. These results imply that PYR has a negative impact on fish intestinal health and may pose serious health risks to fish by disrupting the intestinal microbiota, physical barrier, and immunological barrier in common carp.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Baozhen Hao
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Maolin Han
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Xiaojie Wang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| |
Collapse
|
6
|
Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, Fang JKH, Wang Y, Hu M. Effects of elevated temperature and different crystal structures of TiO 2 nanoparticles on the gut microbiota of mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 199:115979. [PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| |
Collapse
|
7
|
Wang J, Liu C, Wang SP, Zhang TX, Chen JY, Zhou Q, Hou Y, Yan ZG. BDE-209-induced genotoxicity, intestinal damage and intestinal microbiota dysbiosis in zebrafish (Danio Rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167009. [PMID: 37704147 DOI: 10.1016/j.scitotenv.2023.167009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The environmental presence of polybrominated diphenyl ethers (PBDEs) is ubiquitous due to their wide use as brominated flame retardants in industrial products. As a common congener of PBDEs, decabromodiphenyl ether (BDE-209) can pose a health risk to animals as well as humans. However, to date, few studies have explored BDE-209's toxic effects on the intestinal tract, and its relevant mechanism of toxicity has not been elucidated. In this study, adult male zebrafish were exposed to BDE-209 at 6 μg/L, 60 μg/L and 600 μg/L for 28 days, and intestinal tissue and microbial samples were collected for analysis to reveal the underlying toxic mechanisms. Transcriptome sequencing results demonstrated a dose-dependent pattern of substantial gene differential expression in the group exposed to BDE-209, and the differentially expressed genes were mainly concentrated in pathways related to protein synthesis and processing, redox reaction, and steroid and lipid metabolism. In addition, BDE-209 exposure caused damage to intestinal structure and barrier function, and promoted intestinal oxidative stress, inflammatory response, apoptosis and steroid and lipid metabolism disorders. Mechanistically, BDE-209 induced intestinal inflammation by increasing the levels of TNF-α and IL-1β and activating the NFκB signaling pathway, and might induce apoptosis through the p53-Bax/Bcl2-Caspase3 pathway. BDE-209 also significantly inhibited the gene expression of rate-limiting enzymes such as Sqle and 3βhsd (p < 0.05) to inhibit cholesterol synthesis. In addition, BDE-209 induced lipid metabolism disorders through the mTOR/PPARγ/RXRα pathway. 16S rRNA sequencing results showed that BDE-209 stress reduced the richness and diversity of intestinal microbiota, and reduced the abundance of probiotics (e.g., Bifidobacterium and Faecalibacterium). Overall, the results of this study help to clarify the intestinal response mechanism of BDE-209 exposure, and provide a basis for evaluating the health risks of BDE-209 in animals.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tian-Xu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing-Yi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Quan Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
8
|
Zhang TX, Li MR, Liu C, Wang SP, Yan ZG. A review of the toxic effects of ammonia on invertebrates in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122374. [PMID: 37634564 DOI: 10.1016/j.envpol.2023.122374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Aquatic invertebrates are the organisms most susceptible to ammonia toxicity. However, the toxic effects of ammonia on invertebrates are still poorly understood. This study reviews the research progress in ammonia toxicology for the period from 1986 to 2023, focusing on the effects on invertebrates. Through examining the toxic effects of ammonia at different levels of organization (community, individual, tissue and physiology, and molecular) as well as the results from omics studies, we determined that the most significant effects were on the reproductive capacity of invertebrates and the growth of offspring, although different populations show variation in their tolerance to ammonia, and tissues have varied potential to respond to ammonia stress. A multicomponent analysis is an in-depth technique employed in toxicological studies, as it can be used to explore the enrichment pathways and functional genes expressed under ammonia stress. This study comprehensively discusses ammonia toxicity from multiple aspects in order to provide new insights into the toxic effects of ammonia on aquatic invertebrates.
Collapse
Affiliation(s)
- Tian-Xu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
9
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Kuang Y, Guo H, Ouyang K, Wang X, Li D, Li L. Nano-TiO 2 aggravates immunotoxic effects of chronic ammonia stress in zebrafish (Danio rerio) intestine. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109548. [PMID: 36626958 DOI: 10.1016/j.cbpc.2023.109548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Ammonia and nano-TiO2 are commonly found pollutants in aquatic environments around the world. NH3 has been proved to be absorbed on nano-TiO2 surface, therefore, the biosafety and environmental effects of ammonia and co-occurring nano-TiO2 in aquatic environments has increased considerably in recent years. To explore the potential interactive effects and mechanisms of ammonia and nano-TiO2 on the intestinal immune system, three-month-old female zebrafish were exposed to total ammonia nitrogen (TAN; 0, 3, 30 mg/L) with or without nano-TiO2 (1 mg/L) for 60 d. The results showed that intestinal ammonia levels increased with the increase of TAN exposure concentration in the presence of nano-TiO2. Histopathological analysis demonstrated that both TAN and nano-TiO2 caused cell vacuolation, lymphocyte infiltration and goblet cells hyperplasia in the intestine mucosa. Our study also found that the contents and gene expression levels of lysozyme (lys) and β-defensin (def-β) in the intestine of zebrafish exposed to TAN alone or combined with nano-TiO2 were significantly reduced, suggesting a decline in the intestinal innate immunity of fish. A broad upregulation of TLRs-related genes indicated that TAN and nano-TiO2 could activate TLR4/5-mediated MyD88-dependent pathway, and eventually induce intestinal inflammation. It should be noted that TAN combined with nano-TiO2 had more significant inhibitory effects on the intestinal structure and innate immune responses than TAN alone. Current data suggested that ammonia and nano-TiO2 had a synergistic inhibitory effect on intestinal mucosal immunity, and their associated health risk to aquatic animals and the water ecosystem should not be underestimated.
Collapse
Affiliation(s)
- Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
11
|
Huang Y, Wang S, Fan J, Pan J, Zhou Q, Xu J, Wang J, Zhang T, Yan Z. New insights into the mechanism of ammonia toxicity: Focus on Cactus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114357. [PMID: 36508831 DOI: 10.1016/j.ecoenv.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The NF-κB signaling pathway is the most critical pathway in innate immunity. IκB (Cactus) is the primary cytoplasmic inhibitor of NF-κB (Dorsal). In this study, we found that ammonia exposure could significantly induce the expression of Cactus, in a dose-dependent manner in different tissues, with the highest expression in the gill of Corbicula fluminea. The expression pattern-related elements (Tube and Dorsal) in the NF-κB signaling pathway were also analyzed, showing significant up-regulation in 48 h. There was an inhibitory effect between up-regulated Cactus and Dorsal in 72 h, which may regulate Dorsal as a negative feedback pathway function to control the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Besides, through molecular docking simulation, we found that the Cactus could be directly activated by NH3, complementing the regulatory mechanism of the Cactus. To further test our hypothesis, the levels of pro-inflammatory cytokines decreased after adding PDTC (the antioxidant of Cactus/IκB), suggesting that PDTC can prevent the degradation of Cactus, inhibit Dorsal translocating into the nucleus, and activate the pro-inflammatory cytokines. This revealed the inhibitory effect of Cactus on activating Dorsal/NF-κB factors in the NF-κB signaling pathway. Thus, we suggested that the Cactus is an essential regulator of ammonia-activated inflammation in C. fluminea, which was reported to be activated only by bacteria and immune stimulators. Our study provides a new perspective on the mechanism of ammonia toxicity in invertebrates.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China (College of Environmental Science and Engineering), Qingdao 266100, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jinfen Pan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China (College of Environmental Science and Engineering), Qingdao 266100, PR China
| | - Quan Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
12
|
Liu P, Li H, Xu H, Gong J, Jiang M, Qian J, Xu Z, Shi J. Chitooligosaccharides Attenuated Hepatic Encephalopathy in Mice through Stabilizing Gut-Liver-Brain Disturbance. Mol Nutr Food Res 2023; 67:e2200158. [PMID: 36281912 DOI: 10.1002/mnfr.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/10/2022] [Indexed: 01/19/2023]
Abstract
SCOPE Hepatic encephalopathy (HE) refers to neurological dysfunction associated with hepatic inadequacy and gut dysbiosis. Chitooligosaccharides (COS) possesses prominent biological activities including incalculable hepatoprotective, neuroprotective and prebiotic effects. This study evaluates the protective effects of COS on HE from the influence of gut-liver-brain axis in mice. METHODS AND RESULTS Hepatic injured mice show minimal symptoms of HE, reflecting in cognitive impairment, and learning and memory retardation, while they are reversed by COS following orally administrated. Furthermore, COS ameliorates brain function through inhibiting microglial and astrocyte activation in cerebral cortex and hippocampus, promoting neuronal regeneration characterized by the increase of neuron-specific marker (neuronal nuclear antigen, NeuN). Concurrently, neuroinflammation and hepatitis are restrained by COS through descending toll-like receptors 4/Nuclear factor kappa B (TLR4/NF-κB) pathway. Additionally, the dysbiosis of the composition and structure of gut microbiota is displayed in mice with HE, while it is modified by COS through decreasing the relative abundances of Muribaculaceae, Lactobacillus, and Enterorhabdus. The enhancement of blood ammonia is crucially slipped to basal levels by COS. CONCLUSION The present study shows that COS could prevent the pathological process of HE through regulating the gut-liver-brain cross-talk, which provids new insight into fundamental roles of COS.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hongyu Xu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jianying Qian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenghong Xu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Wuxi, 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Zhou Y, Zhao X, Zhang M, Feng J. Gut microbiota dysbiosis exaggerates ammonia-induced tracheal injury Via TLR4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114206. [PMID: 36272174 DOI: 10.1016/j.ecoenv.2022.114206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 05/25/2023]
Abstract
Ammonia is a toxic air pollutant that causes severe respiratory tract injury in animals and humans. Gut microbiota dysbiosis has been found to be involved in the development of respiratory tract injury induced by air pollutants, however, the specific mechanism requires investigation. Here, we found that, inhaled ammonia induced tracheal injury by reducing expression of claudin-1, increasing expression of muc5ac, TLR4, MyD88, NF-κB and cytokines (TNF-α, IL-1β, IL-6 and IL-10), and also altering tracheal microbiota composition. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with TLR4 level in the trachea. Antibiotic depletion intestinal microbiota treatment reduced the severity of ammonia-induced tracheal injury via TLR4 signaling pathway. Microbiota transplantation induced the tracheal injury via TLR4 signaling pathway even without the ammonia exposure. These results indicate that gut microbiota dysbiosis exaggerates ammonia-induced tracheal injury via TLR4 signaling pathway. In addition, the [Ruminococcus]_torques_group, Faecalibacterium, unclassified_f_Lachnospiraceae may be the key gut microbiota contributing to the alterations of tracheal microbiota composition.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xin Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang T, Wen H, Xu D, Lv G, Zhou Y. PacBio Full-Length and Illumina Transcriptomes of the Gill Reveal the Molecular Response of Corbicula fluminea under Aerial Exposure. Int J Mol Sci 2022; 23:11474. [PMID: 36232776 PMCID: PMC9570311 DOI: 10.3390/ijms231911474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Air exposure is a common stress for Corbicula fluminea, an economically important freshwater shellfish consumed in China, during aquaculture and transportation. However, little is known about its molecular responses to air exposure. Therefore, this study used a combination of PacBio full-length and Illumina transcriptomes to investigate its molecular responses to air exposure. A total of 36,772 transcripts were obtained using PacBio sequencing. Structural analysis identified 32,069 coding sequences, 1906 transcription factors, 8873 simple sequence repeats, and 17,815 long non-coding RNAs. Subcellular localization analysis showed that most transcripts were located in the cytoplasm and nucleus. After 96-h of air exposure, 210 differentially expressed genes (DEGs) in the gill were obtained via Illumina sequencing. Among these DEGs, most of the genes related to glycolysis, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism were upregulated. Additionally, many DEGs associated with immunity, cytoskeleton reorganization, autophagy, and ferroptosis were identified. These findings indicated that metabolic strategy change, immune response, cytoskeleton reconstruction, autophagy, and ferroptosis might be the important mechanisms that C. fluminea use to cope with air exposure. This study will enrich the gene resources of C. fluminea and provide valuable data for studying the molecular mechanisms coping with air exposure in C. fluminea and other freshwater mollusks.
Collapse
Affiliation(s)
| | | | | | | | - Yanfeng Zhou
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
15
|
Li H, Meng Q, Wang W, Mo D, Dang W, Lu H. Gut Microbial Composition and Liver Metabolite Changes Induced by Ammonia Stress in Juveniles of an Invasive Freshwater Turtle. BIOLOGY 2022; 11:1315. [PMID: 36138794 PMCID: PMC9495491 DOI: 10.3390/biology11091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
As the most common pollutant in aquaculture systems, the toxic effects of ammonia have been extensively explored in cultured fish, molluscs, and crustaceans, but have rarely been considered in turtle species. In this study, juveniles of the invasive turtle, Trachemys scripta elegans, were exposed to different ammonia levels (0, 0.3, 3.0, and 20.0 mg/L) for 30 days to evaluate the physiological, gut microbiomic, and liver metabolomic responses to ammonia in this turtle species. Except for a relatively low growth rate of turtles exposed to the highest concentration, ammonia exposure had no significant impact on the locomotor ability and gut microbial diversity of turtles. However, the composition of the microbial community could be altered, with some pathogenic bacteria being increased in ammonia-exposed turtles, which might indicate the change in their health status. Furthermore, hepatic metabolite profiles via liquid chromatography-mass spectrometry revealed extensive metabolic perturbations, despite being primarily involved in amino acid biosynthesis and metabolism. Overall, our results show that ammonia exposure causes gut dysbacteriosis and disturbs various metabolic pathways in aquatic turtle species. Considering discrepant defense mechanisms, the toxic impacts of ammonia at environmentally relevant concentrations on physiological performance might be less pronounced in turtles compared with fish and other invertebrates.
Collapse
|
16
|
Yan Z, Du J, Zhang T, Sun Q, Sun B, Zhang Y, Li S. Impairment of the gut health in Danio rerio exposed to triclocarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155025. [PMID: 35390376 DOI: 10.1016/j.scitotenv.2022.155025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Triclocarban (TCC) is the principal component in personal and health care products because it is a highly effective, broad-spectrum, and safe antibacterial agent. TCC has recently been discovered in aquatic creatures and has been shown to constitute a health danger to aquatic animals. Although several studies have looked into the toxicological effects of TCC on a variety of aquatic animals from algae to fish, the possible gut-toxicity molecular pathway in zebrafish has never been thoroughly explored. We investigated the gut-toxic effects of TCC on zebrafish by exposing them to different TCC concentrations (100 and 1000 μg/L) for 21 days. We discovered for the first time that the MAPK and TLR signaling pathways related to gut diseases were significantly altered, and inflammation (up-regulation of TNF-α, IL-6, and IL-1β) caused by TCC was confirmed to be largely mediated by the aryl hydrocarbon receptor (AHR) and its related cytokines. This was found using the results of qPCR, a transcriptome analysis, and molecular docking (AHR, AHRR, CYP1A1 and CYP1B1). Furthermore, high-throughput 16S rDNA sequencing demonstrated that TCC exposure reduced the bacterial diversity and changed the gut microbial composition, with the primary phyla Fusobacteria and Proteobacteria, as well as the genera Cetobacterium and Rhodobacteraceae, being the most affected. TCC exposure also caused damage to the gut tissue, including an increase in the number of goblet cells and a reduction in the height of the columnar epithelium and the thickness of the muscular layer, as shown by hematoxylin and eosin staining. Our findings will aid in understanding of the mechanism TCC-induced aquatic toxicity in aquatic species.
Collapse
Affiliation(s)
- Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jinzhe Du
- Marine Science and Technology College, Qingdao Agricultural University, Qingdao 266109, China Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Binbin Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, PR China.
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
17
|
Wang S, Li X, Zhang M, Jiang H, Wang R, Qian Y, Li M. Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112932. [PMID: 34700169 DOI: 10.1016/j.ecoenv.2021.112932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Ammonia has adverse effects on aquatic animals, which is also widely distributed in natural aquatic environments and intensive aquaculture systems. The intestine is a primary defensive line for aquatic animals, the accumulation of ammonia in the aquatic environment can cause irreversible damage to intestinal function. In this study, we investigated the effects of acute ammonia stress on the reaction characteristics of digestive function, amino acid metabolism, and the variation in the intestinal microbiota of juvenile yellow catfish (Pelteobagrus fulvidraco). Thus, the yellow catfish was placed in water with the addition of ammonia at 0 (control), 14.6, and 146 mg/L total ammonia nitrogen for 96-h. The present study observed that ammonia accumulated in the intestine and muscle (ammonia contents in the intestine and muscle increased) and induced the activities of protein digestive enzymes dysfunction (pepsin increased while trypsin decreased). Ammonia stress changed various amino acids composition (proline, arginine, lysine, histidine, phenylalanine, tyrosine, leucine, isoleucine, valine, alanine, glutamic acid, tyrosine, and aspartic acid contents were increased in muscle) and increased the activities of alanine aminotransferase and aspartate aminotransferase in muscle. Furthermore, through 16 S rRNA gene analysis, ammonia stress-induced reduction in diversity, richness, and evenness and structure of microbiota alteration in the intestine. At the phylum level, the abundance of Fusobacteria increased while Firmicutes and Actinobacteria decreased significantly. At the genus level, the abundance of beneficial microbiota Cetobacterium significantly increased after ammonia stress. In conclusion, activation of amino acid synthesis in muscle may be involved in ammonia detoxification after severe ammonia stress. The accumulation of ammonia can disrupt the intestinal digestive function and intestinal microbiota community. The Cetobacterium may be a new potential positive factor in the resistance of ammonia toxicity.
Collapse
Affiliation(s)
- Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xue Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|