1
|
Duan C, Hu L, Lin X, Xue J, Zou J, Wu H. Impacts of salinity stress induced by ballast water discharge on the ecosystem of shanghai port, China. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106629. [PMID: 39008941 DOI: 10.1016/j.marenvres.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Large quantities of marine ballast water discharged by ocean-going vessels can cause salinity increases in freshwater ports, which in turn negatively affects indigenous plankton in the ports. In this study, we investigated the impacts of marine ballast water discharge on the plankton community in a freshwater wharf through field surveys. It was found that salinity stress caused reductions in community indicators such as plankton community composition, abundance and diversity, thus threatening the structure and function of the plankton community in the wharf. In terms of the impact range, the salinity stress had a significant effect on all plankton in the waters near the discharge point and the phytoplankton in the waters 50 m from the discharge point, but had no significant effect on the plankton in the waters further away. Ballast water discharge also caused a significant decrease in the alpha diversity and richness of the plankton community but had no significant effect on the evenness of the plankton community. Moreover, phytoplankton were more tolerant of salinity changes than zooplankton in our study. This study provides an ecological reference for the scientific management of marine ballast water discharge and the risk of exogenous nutrient inputs to freshwater ecosystems.
Collapse
Affiliation(s)
- Chenyang Duan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Lei Hu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangbin Lin
- Pudong Maritime Safety Administration, Shanghai, 200137, China
| | - Junzeng Xue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin Zou
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
| |
Collapse
|
2
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Lorrain-Soligon L, Robin F, Bertin X, Jankovic M, Rousseau P, Lelong V, Brischoux F. Long-term trends of salinity in coastal wetlands: Effects of climate, extreme weather events, and sea water level. ENVIRONMENTAL RESEARCH 2023; 237:116937. [PMID: 37611783 DOI: 10.1016/j.envres.2023.116937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Coastal freshwater ecosystems play major roles as reservoirs of biodiversity and provide many ecosystem services and protection from extreme weather events. While they are of particular importance worldwide, they are affected by a large variety of anthropogenic threats, among which salinization has been less studied, particularly regarding large temporal and spatial data sets based on real case scenarios, while salinity can impact biodiversity and ecosystem functioning. In this study, we investigated the variations of salinity across long-term (1996-2020) and seasonal (monthly records) temporal scales and spatial (varying distance to the coastline) scales in water bodies of two typical temperate coastal wetlands situated on the Atlantic coast of France. We complemented our analyses with models of sea water levels computed at both sites across 2000-2020. Our detailed data set allowed for highlighting that salinity in ponds varied seasonally (higher during summer, due to decreased precipitation and higher temperature), but also spatially (higher closer to the seashore, which pattern increased through time). Over the long term, decreased precipitation but not increased temperature induced increasing salinity. We also highlighted contrasted long-term patterns of salinity changes on these two coastal wetlands, with one site were salinity decreased over time linked to the responses to marine flood, allowing to document the temporal dynamics of salinity following a massive intrusion of sea water. Complementarily, at both sites, water levels at high tides increased through time, a pattern which can induce additional salinization. To our knowledge, our study is the first to investigate long-term changes in salinity in coastal wetlands through natural processes (e.g. seaspray, seasonal variations) and ongoing climate perturbations (e.g. marine surges linked to extreme weather events, increased temperature and decreased precipitations).
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372, CNRS - La Rochelle Université, 79360, Villiers en Bois, France.
| | | | - Xavier Bertin
- UMR 7266 LIENSs, CNRS-La Rochelle Université, La Rochelle, France
| | - Marko Jankovic
- Réserve Naturelle Du Marais d'Yves LPO, Ferme de La Belle Espérance, 17340, Yves, France
| | - Pierre Rousseau
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, 17780, France
| | - Vincent Lelong
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, 17780, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372, CNRS - La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
4
|
Ersoy Z, Abril M, Cañedo-Argüelles M, Espinosa C, Vendrell-Puigmitja L, Proia L. Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120127. [PMID: 36089138 DOI: 10.1016/j.envpol.2022.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Collapse
Affiliation(s)
- Zeynep Ersoy
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Meritxell Abril
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Carmen Espinosa
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lidia Vendrell-Puigmitja
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
5
|
Rey-Romero DC, Domínguez I, Oviedo-Ocaña ER. Effect of agricultural activities on surface water quality from páramo ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83169-83190. [PMID: 35764727 PMCID: PMC9243867 DOI: 10.1007/s11356-022-21709-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Páramos are high mountain ecosystems strategic for water provision in South America. Currently, páramos are under threat due to agricultural intensification that impairs surface water sources. This research analyzed the effect of agriculture (spring onion-Allium fistulosum, potato-Solanum tuberosum, and livestock farming) on water quality in páramo ecosystems. A Hydrographic Unit upstream of the Jordan river catchment (Colombia) was selected and monitored in two different rainfall regimes, following the paired catchments and upstream-downstream approaches to compare water quality from natural and anthropic areas. Twenty-two parameters related to agricultural activities were analyzed (nutrients, salts, organic matter, sediments, and pathogens). The studied agricultural activities increased loads of surface water in quality in nitrates (0.02 to 2.56 mg N-NO3/L), potassium (0.13 to 1.24 mg K/L), and Escherichia coli (63 to 2718 FCU/100 mL), generating risks on the human health and promoting eutrophication. Total nitrogen and organic matter in the rainy season were higher than dry. BOD5, COD, turbidity, and E. coli were above international standards for direct human consumption. However, water could be used for irrigation, livestock watering, and aquatic life ambient freshwater. The results show that a small land-use change of almost 15% from natural páramo vegetation to agricultural uses in these ecosystems impairs water quality, limiting its uses, and the need to harmonize small-scale livelihoods in the páramo with the sustainability of ecosystem service provision.
Collapse
Affiliation(s)
- Daniela Cristina Rey-Romero
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Isabel Domínguez
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Edgar Ricardo Oviedo-Ocaña
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria, Bucaramanga, Colombia.
| |
Collapse
|
6
|
Gurung MM, Dorji C, B. Gurung D, Smit H. Environmental factors affecting water mites (Acari: Hydrachnidia) assemblage in streams, Mangde Chhu basin, central Bhutan. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7979.14.10.21976-21991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Water mites were sampled from 15 tributary streams of Mangde Chhu river in Zhemgang and Trongsa districts, Central Bhutan in pre-monsoon (April–May) and post-monsoon (October–November) of 2021. A total of 802 individuals were collected belonging to seven families and 15 genera. The accumulation curve suggests that the sampling efforts were adequate to give a proper overview of genera composition for elevations 500–2,700 m. Eleven genera—Aturus, Kongsbergia, Woolastookia, Atractides, Hygrobates, Lebertia, Piona, Sperchonopsis, Monatractides, Pseudotorrenticola and Testudacarus—and five families—Aturidae, Hygrobatidae, Lebertiidae, Pionidae, and Protziinae—are new records for Bhutan. Independent sample t-tests of genera richness (t, (26) = 0.244, p = 0.809); genera evenness (t, (26) = 0.735, p = 0.469); Shannon diversity index (t, (26) = 0.315, p = 0.755) and dominance (t, (26) = -0.335, p = 0.741) showed no significant differences between pre- and post-monsoon assemblages. Species abundance was also not significantly different (t, (28) = -0.976, p = 0.330). Principal component analysis indicated that the diversity of water mites is negatively associated with several environmental variables including chloride (r = -0.617), ammonia (r = -0.603), magnesium hardness (r = -0.649), total hardness (r = -0.509), temperature (r = -0.556), salinity (r = -0.553), total dissolved solids (r = -0.509) and electrical conductivity (r = -0.464). Diversity was positively correlated with altitude, mainly caused by the higher Palaearctic genera diversity. Similarly, Pearson’s correlation test showed that there was significant negative correlation between mite abundance and the water physio-chemical parameters salinity (r = -0.574, p = 0.032), electrical conductivity (r = -0.536, p = 0.048), total dissolved solids (r = -0.534, p = 0.049), total hardness (r = -0.621, p = 0.018), and chloride concentration (r = -0.545, p = 0.036), indicating sensitivity of water mites to pollution.
Collapse
|
7
|
Lorrain-Soligon L, Bichet C, Robin F, Brischoux F. From the Field to the Lab: Physiological and Behavioural Consequences of Environmental Salinity in a Coastal Frog. Front Physiol 2022; 13:919165. [PMID: 35721550 PMCID: PMC9201275 DOI: 10.3389/fphys.2022.919165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental salinization is recognized as a global threat affecting biodiversity, particularly in coastal ecosystems (affected by sea level rise and increased frequency and severity of storms), and the consequent osmoregulatory challenges can negatively affect wildlife. In order to assess whether coastal species can respond to changes in environmental salinity, it remains essential to investigate the consequences of exposure to salinity in an environmentally-relevant context. In this study, we assessed the consequences of exposure to environmental salinity in coastal frogs (Pelophylax sp., N = 156) both in the field and experimentally, using a comprehensive combination of markers of physiology, behaviour and ecology. Exposure to salinity in the field negatively affected physiological parameters (osmolality, monocytes and eosinophils counts), as well as body condition and locomotor performance, and influenced size- and sex-specific habitat selection. Further, we demonstrated in a controlled experiment that short-term exposure to salinity strongly affected physiological parameters (salt influxes, water effluxes, immunity-related stress markers) and locomotor performance. Most of these effects were transient (water and salt fluxes, locomotor performance) once optimal conditions resumed (i.e., freshwater). Taken together, our results highlight the need to investigate whether exposure to environmental salinity can ultimately affect individual fitness and population persistence across taxa.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
- *Correspondence: Léa Lorrain-Soligon,
| | - Coraline Bichet
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, Rochefort, France
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS–La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
8
|
Zhang VM, Martin RL, Murray RL. Chronic Road Salt Exposure Across Life Stages and The Interactive Effects of Warming and Salinity in a Semiaquatic Insect. ENVIRONMENTAL ENTOMOLOGY 2022; 51:313-321. [PMID: 35348654 DOI: 10.1093/ee/nvac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The salinization of freshwater habitats from winter road salt application is a growing concern. Understanding how taxa exposed to road salt run-off respond to this salinity exposure across life history transitions will be important for predicting the impacts of increasing salinity. We show that Leucorrhinia intacta Hagen, 1861 (Odonata: Libellulidae) dragonflies are robust to environmentally relevant levels of salt pollution across intrinsically stressful life history transitions (hatching, growth, and metamorphosis). Additionally, we observed no carry-over effects into adult dragonfly morphology. However, in a multiple-stressor setting, we see negative interactive effects of warming and salinity on activity, and we found that chronically warmed dragonfly larvae consumed fewer mosquitoes. Despite showing relatively high tolerance to salinity individually, we expect that decreased dragonfly performance in multiple-stressor environments could limit dragonflies' contribution to ecosystem services such as mosquito pest control in urban freshwater environments.
Collapse
Affiliation(s)
- Vicki M Zhang
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. L5L 1C6, Mississauga, Ontario, Canada
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St. M5S 3B2, Toronto, Ontario, Canada
| | - Rosemary L Martin
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. L5L 1C6, Mississauga, Ontario, Canada
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St. M5S 3B2, Toronto, Ontario, Canada
| | - Rosalind L Murray
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. L5L 1C6, Mississauga, Ontario, Canada
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St. M5S 3B2, Toronto, Ontario, Canada
| |
Collapse
|