1
|
Geetha T, Smitha JK, Sebastian M, Litty MI, Joseph B, Joseph J, Nisha T. Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon 2024; 10:e39450. [PMID: 39553590 PMCID: PMC11565452 DOI: 10.1016/j.heliyon.2024.e39450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
In the present study, Coconut Husk Biochar (CHB) was synthesize from widely available, locally sourced agro waste, coconut husk and characterized using different techniques like scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). CHB was tested for its ability to adsorb crystal violet (CV), a commonly used cationic dye, from water. It was capable of adsorbing more than 98 % of CV from water and follows Freundlich isotherm model with pseudo second order kinetics though the overall process was unfavourable. Moreover, separation of CHB from water after adsorption is a cumbersome process. Thus, unmodified CHB is not suitable for use as an adsorbent for CV. Magnetic nano iron oxide Biochar Composite (MBC) was synthesized by deposition of nano iron oxide (Fe3O4) onto its surface by co-precipitation method and characterized using SEM, XRD and FTIR. SEM analysis provided visual evidence of this deposition which was further confirmed by XRD and FTIR analysis. MBC was also effective in adsorbing more than 90 % of CV from aqueous solution though a decrease in adsorption capacity was observed. Adsorption data followed Langmuir isotherm model and pseudo second order kinetics. MBC is superparamagnetic and is strongly attracted to a small bar magnet, facilitating easy removal from water after CV adsorption.
Collapse
Affiliation(s)
- T. Geetha
- Dept. of Chemistry, Vimala College (Autonomous), Thrissur, Kerala, 680009, India
| | - John K. Smitha
- Dept. of Soil Science and Agricultural Chemistry, Kerala Agriculture University, Thrissur, Kerala, 680656, India
| | - Manju Sebastian
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | | | - Bincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - Jincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - T.S. Nisha
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| |
Collapse
|
2
|
Sun Y, Guo M, Hu S, Jia Y, Zhu W, Yamauchi Y, Wang C. A carbon-based bifunctional heterogeneous enzyme: toward sustainable pollution control. Chem Sci 2024:d4sc03752a. [PMID: 39386913 PMCID: PMC11459632 DOI: 10.1039/d4sc03752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
We present a study on an immobilized functional enzyme (IFE), a novel biomaterial with exceptional sustainability in enzyme utility, widely employed across various fields worldwide. However, conventional carriers are prone to eroding the active functional domain of the IFE, thereby weakening its intrinsic enzyme activity. Consequently, there is a burgeoning interest in developing next-generation IFEs. In this study, we engineered a carbon-based bifunctional heterogeneous enzyme (MIP-AMWCNTs@lipase) for the intelligent recognition of di(2-ethylhexyl)phthalate (DEHP), a common plasticizer. The heterogeneous enzyme contains a bifunctional structural domain that both enriches and degrades DEHP. We investigated its dual-response performance for the enrichment and specific removal of DEHP. The imprinting factor of the carrier for DEHP was 3.4, demonstrating selectivity for DEHP. The removal rate reached up to 94.2% over a short period. The heterogeneous enzyme exhibited robust activity, catalytic efficiency, and excellent stability under harsh environmental conditions, retaining 77.7% of its initial lipase activity after 7 cycles. Furthermore, we proposed a stepwise heterogeneous enzyme reaction kinetic model based on the Michaelis-Menten equation to enhance our understanding of enzyme reaction kinetics. Our study employs a dual-effect recognition strategy of molecular blotting and enzyme immobilization to establish a method for the removal of organic pollutants. These findings hold significant implications for the fields of biomaterials and environmental science.
Collapse
Affiliation(s)
- Yuting Sun
- College of Environmental and Resource Sciences, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Shengnan Hu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Chaohai Wang
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction Pingdingshan Henan 467036 China
| |
Collapse
|
3
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
4
|
Choudhary P, Bhatt S, Chatterjee S. From freezing to functioning: cellular strategies of cold-adapted bacteria for surviving in extreme environments. Arch Microbiol 2024; 206:329. [PMID: 38940837 DOI: 10.1007/s00203-024-04058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The ability of cold-adapted bacteria to survive in extreme cold and diverse temperatures is due to their unique attributes like cell membrane stability, up-regulation of peptidoglycan biosynthesis, increased production of extracellular polymeric substances, and expansion of membrane pigment. Various cold-adapted proteins, including ice-nucleating proteins (INPs), antifreeze proteins (AFPs), cold shock proteins (Csps), and cold-acclimated proteins (CAPs), help the bacteria to survive in these environments. To sustain cells from extreme cold conditions and maintain stability in temperature fluctuations, survival strategies at the molecular level and their mechanism play significant roles in adaptations in cryospheric conditions. Furthermore, cold shock domains present in the multifunctional cold shock proteins play crucial roles in their adaptation strategies. The considerable contribution of lipopeptides, osmolytes, and membrane pigments plays an integral part in their survival in extreme environments. This review summarizes the evolutionary history of cold-adapted bacteria and their molecular and cellular adaptation strategies to thrive in harsh cold environments. It also discusses the importance of carotenoids produced, lipid composition, cryoprotectants, proteins, and chaperones related to this adaptation. Furthermore, the functions and mechanisms of adaptations within the cell are discussed briefly. One can utilize and explore their potential in various biotechnology applications and their evolutionary journey by knowing the inherent mechanism of their molecular and cellular adaptation to cold climatic conditions. This review will help all branches of the life science community understand the basic microbiology of psychrophiles and their hidden prospect in life science research.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
5
|
Zhai J, Jiang C, Xue X, Wang H. Biofiltration of toluene and ethyl acetate mixture by a fungal-bacterial biofilter: Performance and community structure analysis. Heliyon 2024; 10:e31984. [PMID: 38882306 PMCID: PMC11176807 DOI: 10.1016/j.heliyon.2024.e31984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
The inhibitory effect of hydrophilic volatile organic compounds (VOCs) on hydrophobic VOCs removal was found to be efficiently reduced by the fungal-bacterial biofilters (F&B-BFs) developed in the present study. Overall, the toluene and ethyl acetate mixture removal efficiencies (REs) and elimination capacities (ECs) of F&B-BFs were superior to those of bacterial biofilters (B-BFs). The REs for toluene and ethyl acetate were 32.5 ± 0.8 % and 74.6 ± 1.0 %, respectively, for F&B-BFs, in comparison to 8.0 ± 0.3 % and 60 ± 1.3 % for B-BFs. The ECs for toluene and ethyl acetate were 13.0 g m-3 h-1 and 149.2 g m-3 h-1, respectively, for the F&B-BF, compared to 3.2 g m-3 h-1 and 119.6 g m-3 h-1 for the B-BFs. This was achieved at a constant empty bed residence time (EBRT) of 45 s. F&B-BFs exhibited a superior mineralization efficiencies (MEs) compared to B-BFs for a VOC mixture of toluene and ethyl acetate (≈36.1 % vs ~ 29.6 %). This is attributed to the direct capture of VOCs by the presence of fungi, increased the contact time between VOCs and VOCs-degrading bacteria, and even distribution of VOCs-degrading bacteria in the F&B-BFs. Moreover, compared with B-BFs, the coupling effect of genus Pseudomonas degradation, and unclassified_f_Herpotrichiellaceae and unclassified_p_Ascomycota adsorption of F&B-BF resulted in a reduction in the impact of the presence of hydrophilic VOCs on the removal of hydrophobic VOCs, thereby enhancing the biofiltration performance of mixtures of hydrophilic and hydrophobic VOCs.
Collapse
Affiliation(s)
- Jian Zhai
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, People's Republic of China
| | - Chunhua Jiang
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai, People's Republic of China
| | - Xiaojuan Xue
- School of Environmental Engineering, Gansu Forestry Polytechnic, Tianshui, Gansu Province, People's Republic of China
| | - Hai Wang
- School of Environmental Engineering, Gansu Forestry Polytechnic, Tianshui, Gansu Province, People's Republic of China
| |
Collapse
|
6
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
7
|
Chaubey A, Pratap T, Preetiva B, Patel M, Singsit JS, Pittman CU, Mohan D. Definitive Review of Nanobiochar. ACS OMEGA 2024; 9:12331-12379. [PMID: 38524436 PMCID: PMC10955718 DOI: 10.1021/acsomega.3c07804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Nanobiochar is an advanced nanosized biochar with enhanced properties and wide applicability for a variety of modern-day applications. Nanobiochar can be developed easily from bulk biochar through top-down approaches including ball-milling, centrifugation, sonication, and hydrothermal synthesis. Nanobiochar can also be modified or engineered to obtain "engineered nanobiochar" or biochar nanocomposites with enhanced properties and applications. Nanobiochar provides many fold enhancements in surface area (0.4-97-times), pore size (0.1-5.3-times), total pore volume (0.5-48.5-times), and surface functionalities over bulk biochars. These enhancements have given increased contaminant sorption in both aqueous and soil media. Further, nanobiochar has also shown catalytic properties and applications in sensors, additive/fillers, targeted drug delivery, enzyme immobilization, polymer production, etc. The advantages and disadvantages of nanobiochar over bulk biochar are summarized herein, in detail. The processes and mechanisms involved in nanobiochar synthesis and contaminants sorption over nanobiochar are summarized. Finally, future directions and recommendations are suggested.
Collapse
Affiliation(s)
| | - Tej Pratap
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manvendra Patel
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jonathan S. Singsit
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Charles U. Pittman
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Cárdenas-Moreno Y, González-Bacerio J, García Arellano H, Del Monte-Martínez A. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst. Biotechnol Appl Biochem 2023; 70:2108-2135. [PMID: 37753743 DOI: 10.1002/bab.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
Oxidoreductases are enzymes with distinctive characteristics that favor their use in different areas, such as agriculture, environmental management, medicine, and analytical chemistry. Among these enzymes, oxidases, dehydrogenases, peroxidases, and oxygenases are very interesting. Because their substrate diversity, they can be used in different biocatalytic processes by homogeneous and heterogeneous catalysis. Immobilization of these enzymes has favored their use in the solution of different biotechnological problems, with a notable increase in the study and optimization of this technology in the last years. In this review, the main structural and catalytical features of oxidoreductases, their substrate specificity, immobilization, and usage in biocatalytic processes, such as bioconversion, bioremediation, and biosensors obtainment, are presented.
Collapse
Affiliation(s)
- Yosberto Cárdenas-Moreno
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jorge González-Bacerio
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, Havana, Cuba
| | - Humberto García Arellano
- Department of Environmental Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University, Lerma, Mexico, Mexico
| | - Alberto Del Monte-Martínez
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| |
Collapse
|
9
|
Kaur G, Lecka J, Krol M, Brar SK. Novel BTEX-degrading strains from subsurface soil: Isolation, identification and growth evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122303. [PMID: 37558195 DOI: 10.1016/j.envpol.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and o, m, and p-xylenes (BTEX) are high-risk pollutants because of their mutagenic and carcinogenic nature. These pollutants are found with elevated levels in groundwater and soil in Canada at several contaminated sites. The intrinsic microbes present in the subsurface have the potential to degrade pollutants by their metabolic pathways and convert them to non-toxic products. However, the low subsurface temperature (5-10 °C) limits their growth and degradation ability. This study examined the feasibility of subsurface heat augmentation using geothermal heating for BTEX bioremediation. Novel potent BTEX-degrading bacterial strains were isolated from soil at 3.0, 42.6, and 73.2 m depths collected from a geothermal borehole during installation and screened using an enrichment technique. The selected strains were identified with Sanger sequencing and phylogenetic tree analysis, revealing that all the strains except Bacillus subtilis are novel with respective to BTEX degradation. The isolates, Microbacterium esteraromaticum and Bacillus infantis showed the highest degradation with 67.98 and 65.2% for benzene, 72.8 and 71.02% for toluene, 77.52 and 76.44% for ethylbenzene, and 74.58 and 74.04% for xylenes respectively. Further, temperature influence at 15 ± 1 °C, 28 ± 1 °C and 40 ± 1 °C was observed, which showed increased growth by two-fold and on average 35-49% more biodegradation at higher temperatures. Results showed that temperature is a positive stimulant for bioremediation, hence geothermal heating could also be a stimulant for in-situ bioremediation.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Joanna Lecka
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environment, 490, Rue de La Couronne, Quebec, G1K 9A9, Canada
| | - Magdalena Krol
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
10
|
Chauhan P, Imam A, Kanaujia PK, Suman SK. Nano-bioremediation: an eco-friendly and effective step towards petroleum hydrocarbon removal from environment. ENVIRONMENTAL RESEARCH 2023; 231:116224. [PMID: 37224942 DOI: 10.1016/j.envres.2023.116224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Global concern about petroleum hydrocarbon pollution has intensified and gained scientific interest due to its noxious nature, high persistence in environmental matrices, and low degradability. One way to address this is by combining remediation techniques that could overcome the constraints of traditional physio-chemical and biological remediation strategies. The upgraded concept of bioremediation to nano-bioremediation in this direction offers an efficient, economical, and eco-friendly approach to mitigate petroleum contaminants. Here, we review the unique attributes of different types of nanoparticles and their synthesis procedures in remediating various petroleum pollutants. This review also highlights the microbial interaction with different metallic nanoparticles and their consequential alteration in microbial as well as enzymatic activity which expedites the remediating process. Besides, the latter part of the review explores the application of petroleum hydrocarbon degradation and the application of nano supports as immobilizing agents for microbes and enzymes. Further, the challenges and the future prospects of nano-bioremediation have also been discussed.
Collapse
Affiliation(s)
- Pooja Chauhan
- Analytical Sciences Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Material Resource Efficiency Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arfin Imam
- Analytical Sciences Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Material Resource Efficiency Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Kumar Kanaujia
- Analytical Sciences Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, Malik S, Slama P. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Front Microbiol 2023; 14:1214870. [PMID: 37547682 PMCID: PMC10400457 DOI: 10.3389/fmicb.2023.1214870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Archna Dhasmana
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vishal Rajput
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Gong M, Wang Y, Bao D, Jiang S, Chen H, Shang J, Wang X, Hnin Yu H, Zou G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling. BIORESOURCE TECHNOLOGY 2023; 376:128888. [PMID: 36925076 DOI: 10.1016/j.biortech.2023.128888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Low ambient temperature poses a challenge for rice straw-silage processing in cold climate regions, as cold limits enzyme and microbial activity in silages. Here, a novel cold-active cellobiohydrolase (VvCBHI-I) was isolated from Volvariella volvacea, which exhibited outstanding cellobiohydrolase activity at 10-30 °C. The crude cellulase complex in the VvCBHI-I-expressing transformant T1 retained 50% relative activity at 10 °C, while the wildtype Trichoderma reesei showed <5% of the activity. VvCBHI-I greatly improved the saccharification efficiency of the cellulase complex with pretreated rice straw as substrate at 10 °C. In rice straw silage, pH (<4.5) and lactic acid content (>4.6%) remained stable after 15-day ensiling with the cellulase complex from T1 and Lactobacillus plantarum. Moreover, the proportions of cellulose and hemicellulose decreased to 29.84% ± 0.15% and 21.25% ± 0.26% of the dried material. This demonstrates the crucial potential of mushroom-derived cold-active cellobiohydrolases in successful ensiling in cold regions.
Collapse
Affiliation(s)
- Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Shan Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hongyu Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Junjun Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hnin Hnin Yu
- Microbiology Laboratory, Botany Department, University of Mandalay, 73 & 41 Street, Maharaungmyay Township, Mandalay Division, Myanmar
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China.
| |
Collapse
|
14
|
Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 2023; 107:3355-3374. [PMID: 37093306 DOI: 10.1007/s00253-023-12529-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
15
|
Chaudhary DK, Park JH, Kim PG, Ok YS, Hong Y. Enrichment cultivation of VOC-degrading bacteria using diffusion bioreactor and development of bacterial-immobilized biochar for VOC bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121089. [PMID: 36669717 DOI: 10.1016/j.envpol.2023.121089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) have been globally reported at various sites. Currently, limited literature is available on VOC bioremediation using bacterial-immobilized biochar (BC-B). In this study, multiple VOC-degrading bacteria were enriched and isolated using a newly designed diffusion bioreactor. The most effective VOC-degrading bacteria were then immobilized on rice husk-derived pristine biochar (BC) to develop BC-B. Finally, the performances of BC and BC-B for VOCs (benzene, toluene, xylene, and trichloroethane) bioremediation were evaluated by establishing batch microcosm experiments (Control, C; bioconsortium, BS; pristine biochar, BC; and bacterial-immobilized biochar, BC-B). The results revealed that the newly designed diffusion bioreactor effectively simulated native VOC-contaminated conditions, easing the isolation of 38 diverse ranges of VOC-degrading bacterial strains. Members of the genus Pseudomonas were isolated in the highest (26.33%). The most effective bacterial strain was Pseudomonas sp. DKR-23, followed by Rhodococcus sp. Korf-18, which degraded multiple VOCs in the range of 52-75%. The batch microcosm experiment data showed that BC-B remediated the highest >90% of various VOCs, which was comparatively higher than that of BC, BS, and C. In addition, compared with C, the BS, BC, and BC-B microcosms abundantly reduced the half-life of various VOCs, implying a beneficial impact on the degradation behavior of VOCs. Altogether, this study suggests that a diffusion bioreactor system can be used as a cultivation device for the isolation of a wide range of VOC-degrading bacterial strains, and a compatible combination of biochar and bacteria may be an attractive and promising approach for the sustainable bioremediation of multiple VOCs.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Joung-Ho Park
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Pil-Gon Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
16
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
17
|
Davoodi SM, Miri S, Brar SK, Knystautas E, Martel R. Simulation of novel jellyfish type of process for bioremediation application. CHEMOSPHERE 2023; 313:137376. [PMID: 36436585 DOI: 10.1016/j.chemosphere.2022.137376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
A bioinspired device was fabricated as a sustainable remedial method and its performance as a membrane-enzyme reactor with cyclic ultrafiltration was investigated. The body of the jellyfish-like device was composed of two parts: 1) Jellyfish arms: Mono and co-axial electrospinning have been utilized to synthesize the flexible parts (e.g., multilayer membrane PS-PVDF/PAN/PS-PVDF) used for immobilization of aliphatic degrading enzymes, and 2) Jellyfish tentacles: Hollow fiber membranes were selected for physical immobilization of polycyclic aromatic hydrocarbon (PAH) degrading enzymes. To study the behavior of the membrane/enzyme reactor, the hollow fiber enzyme reactor with pulsation was operated by recycling an enzyme solution to assess ultrafiltration efficiency. A mathematical model was suggested to describe the experimental data obtained in this study to predict the effectiveness of the reactor for PAH removal. When testing the performance of the jellyfish-like device, those equipped with nanofibers with an oil sorption capacity of (10. ±0.7gdilbit/gfiber) were more effective at removing oil particles before they touched the hollow fiber membrane surface. Moreover, the reaction rate measured in a free soluble enzyme and a recirculating immobilized enzyme solution exhibited a slight difference in the kinetic parameter, Km (0.03 and 0.021 mM) due to the internal diffusional resistance. Based on biodegradation studies, a synergistic effect between membrane adsorption, enzymatic degradation, and ultrafiltration was proposed for the removal of anthracene from the column of water.
Collapse
Affiliation(s)
- Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Emile Knystautas
- Département de Physique, de Génie Physique et D'optique, Université Laval, Québec, G1V 0A6, Canada
| | - Richard Martel
- INRS-ETE, Université Du Québec, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
18
|
Lin H, Yang Y, Li Y, Feng X, Li Q, Niu X, Ma Y, Liu A. Bioenhanced degradation of toluene by layer-by-layer self-assembled silica-based bio-microcapsules. Front Microbiol 2023; 14:1122966. [PMID: 36891398 PMCID: PMC9986300 DOI: 10.3389/fmicb.2023.1122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, micron-sized monodisperse SiO2 microspheres were used as sacrificial templates, and chitosan/polylactic acid (CTS/PLA) bio-microcapsules were produced using the layer-by-layer (LBL) assembly method. Microcapsules isolate bacteria from their surroundings, forming a separate microenvironment and greatly improving microorganisms' ability to adapt to adverse environmental conditions. Morphology observation indicated that the pie-shaped bio-microcapsules with a certain thickness could be successfully prepared through LBL assembly method. Surface analysis showed that the LBL bio-microcapsules (LBMs) had large fractions of mesoporous. The biodegradation experiments of toluene and the determination of toluene degrading enzyme activity were also carried out under external adverse environmental conditions (i.e., unsuitable initial concentrations of toluene, pH, temperature, and salinity). The results showed that the removal rate of toluene by LBMs can basically reach more than 90% in 2 days under adverse environmental conditions, which is significantly higher than that of free bacteria. In particular, the removal rate of toluene by LBMs can reach four times that of free bacteria at pH 3, which indicates that LBMs maintain a high level of operational stability for toluene degradation. Flow cytometry analysis showed that LBL microcapsules could effectively reduce the death rate of the bacteria. The results of the enzyme activity assay showed that the enzyme activity was significantly stronger in the LBMs system than in the free bacteria system under the same unfavorable external environmental conditions. In conclusion, the LBMs were more adaptable to the uncertain external environment, which provided a feasible bioremediation strategy for the treatment of organic contaminants in actual groundwater.
Collapse
Affiliation(s)
- Hongyang Lin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yang Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yongxia Li
- Shandong Academy of Environmental Science Co., Ltd., Jinan, China
| | - Xuedong Feng
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, China
| | - Xiaoyin Niu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Yanfei Ma
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| | - Aijv Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
| |
Collapse
|
19
|
Gaur VK, Gupta S, Pandey A. Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61821-61837. [PMID: 34420173 DOI: 10.1007/s11356-021-16047-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Increasing petroleum consumption and a rise in incidental oil spillages have become global concerns owing to their aquatic and terrestrial toxicity. Various physicochemical and biological treatment strategies have been studied to tackle them and their impact on environment. One of such approaches in this regard is the use of microbial processes due to their being "green" and also apparent low cost and high effectiveness. This review presents the advancement in the physical and biological remediation methods and their progressive efficacy if employed in combination of hybrid modes. The use of biosurfactants and/or biochar along with microbes seems to be a more effective bioremediation approach as compared to their individual effects. The lacuna in research at community or molecular level has been overcome by the recent introduction of "-omics" technology in hydrocarbon degradation. Thus, the review further focuses on presenting the state-of-art information on the advancement of petroleum bioremediation strategies and identifies the research gaps for achieving total mitigation of petroleum oil.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India.
| |
Collapse
|
20
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
22
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|