1
|
Palmer MJ, Richardson M, Chételat J, Spence C, Connon R, Jamieson HE. Watershed hydrology mediates the recovery of an arsenic impacted subarctic landscape. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124480. [PMID: 38968985 DOI: 10.1016/j.envpol.2024.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
A holistic understanding of the chemical recovery of lakes from arsenic (As) pollution requires consideration of within-lake biogeochemical cycling of As and processes occurring in the surrounding catchment. This study used a watershed mass balance approach, complemented by experimental sediment incubations, to assess the mobility and transport of As within a subarctic watershed (155 km2) impacted by more than 60 years of atmospheric mining emissions. The period of record spanned a transition from drought to high streamflow between September 2017 and September 2019, which yielded insights into the interacting effects of hydrology and within-lake biogeochemical cycling of As. Internal loading of As from contaminated lake sediments (25-46 kg As year-1) and contributions from terrestrial sources (16-56 kg As yr-1) continue to negatively impact lake water quality (19-144 μg As L-1), but the relative importance of these loads varies seasonally and inter-annually in response to changing hydrological conditions. Wet conditions resulted in greater transport of As from terrestrial reservoirs and upstream areas, shorter lake water retention time, and increased the downstream export of As. During dry periods, the lake was disconnected from the surrounding watershed resulting in limited terrestrial contributions and longer lake water residence time, which delayed recovery due to the greater relative influence of internal loading from contaminated sediments. This study highlights that changing hydroclimatic regimes will alter trajectories of chemical recovery for arsenic impacted lakes through the coupling of within-lake and watershed transport processes.
Collapse
Affiliation(s)
- Michael J Palmer
- North Slave Research Centre, Aurora Research Institute, Aurora College, Yellowknife, NT, Canada; Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada.
| | - Murray Richardson
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
| | - John Chételat
- Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Chris Spence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Ryan Connon
- Environment and Climate Change, Government of the Northwest Territories, Yellowknife, NT, Canada
| | - Heather E Jamieson
- Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Neweshy W, Planas D, Sanderson N, Couture RM. Longevity and efficacy of lanthanum-based P remediation under changing dissolved oxygen availability in a small eutrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1336-1347. [PMID: 38766807 DOI: 10.1039/d3em00572k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We set out to study the seasonal variations in porewater phosphorus and lanthanum concentrations in the dated sediment cores from a small eutrophic lake that has been treated with Phoslock, a lanthanum-modified bentonite (LMB) amendment. Three sites were sampled when the hypolimnion was either oxygenated or anoxic: (i) the lake's deepest point, (ii) a littoral site receiving inflows from the catchment, and (iii) a littoral site influenced by nearby septic tanks. Phosphate (PO43--P), lanthanum (La), iron (Fe), dissolved organic carbon (DOC) and sulfate (SO42-) were measured in porewater samples. An inverse diagenetic model was used to quantify fluxes of dissolved elements across the sediment-water interface as well as the net rate of their reactions along the porewater concentration gradients. Results show that porewater P and Fe underwent strong seasonal dynamics, while La did not. P fluxes, 20-fold higher at the deepest site than elsewhere in the basin, were influenced by anoxic conditions in the hypolimnion during summer and winter, suggesting that P mobility remained sensitive to redox fluctuations despite the addition of La. At the deepest site, fluxes of P across the sediment-water interface increased from 1 to 9 × 10-9 μmol cm-2 s-1 between spring and summer, while the rate of P production to the porewater also increased a hundredfold. These increases were concurrent with Fe mobilization. Finally, sediment dating shows that the fraction of P sequestered by La is buried under freshly deposited sediment at a rate of 2-3 mm per year. These results indicate that external P fluxes and erosion control remain crucial to maintain the longevity of the LMB treatment.
Collapse
Affiliation(s)
- Wessam Neweshy
- Département de Chimie, Université Laval, Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Dolors Planas
- Département de Sciences Biologiques, Université de Québec à Montréal, Canada and GRIL (Interuniversity Research Group in Limnology), Canada
| | - Nicole Sanderson
- Département de Géographie, Université du Québec à Montréal, Canada and Centre de Recherche en Géochimie et Géodynamique (GEOTOP), Canada
| | - Raoul-Marie Couture
- Département de Chimie, Université Laval, Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| |
Collapse
|
3
|
Wang S, Ding S, Zhao H, Chen M, Yang D, Li C. Seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic in sediments of Lake Taihu, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132852. [PMID: 37890386 DOI: 10.1016/j.jhazmat.2023.132852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
This study investigated seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic (As) in sediments of three representative ecological lakes in Lake Taihu. Results suggested that the bioavailability and mobility of As in sediments depended on the lake ecological types and seasonal changes. At the algal-type zones and macrophyte-type zones, elevated As concentrations were observed in April and July, while these occurred at the transition areas in July and October. The diffusion flux of soluble As ranged from 0.03 to 3.03 ng/cm2/d, indicating sediments acted as a source of As. Reductive dissolution of As-bearing iron/manganese-oxides was the key driver of sediment As remobilization. However, labile S(-II) caused by the degradations of algae and macrophytes buffered sediment As release at the algal-type and macrophyte-type zones. Furthermore, the resupply ratio was less than 1 at three ecological lakes, indicating the resupply As capacity of sediment solid phase was partially sustained case. The risk quotient values were higher than 1 at the algal-type zones and transition areas in July, thereby, the adverse effects of As should not be ignored. This suggested that it is urgently need to be specifically monitored and managed for As contamination in sediments across multi-ecological lakes.
Collapse
Affiliation(s)
- Shuhang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hanbin Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
4
|
Chételat J, Palmer MJ, Paudyn K, Jamieson H, Amyot M, Harris R, Hesslein R, Pelletier N, Peraza I. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131230. [PMID: 36989775 DOI: 10.1016/j.jhazmat.2023.131230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Arsenic contamination from mining poses an environmental challenge due to the mobility of this redox-sensitive element. This study evaluated arsenic mobility in sediments of Yellowknife Bay (Canada), a large subarctic water body impacted by gold mining during the 20th century. Short-term measurements of arsenic flux from sediment, arsenic profiling of the water column and sediment porewater, and mass balance modelling were conducted to assess the importance of sediment as an arsenic source. Sediment arsenic fluxes were highly variable throughout Yellowknife Bay and ranged from - 65-1520 µg m-2 day-1. Elevated fluxes measured near the mine site were among the highest published for well-oxygenated lakes. Redox boundaries were typically 2-3 cm below the sediment surface as indicated by porewater profiles of iron, manganese, and arsenic, with arsenic maxima of 65-3220 µg L-1 predominately as arsenite. Sediment arsenic flux was positively related to its solid-phase concentration. Modelling indicated sediment was a principal source of arsenic to the water column. Adsorption and precipitation processes in the oxidizing environment of near-surface sediments did not effectively attenuate arsenic remobilized from contaminated sediments. Internal recycling of legacy arsenic between sediment and surface water will impede a return to background conditions in Yellowknife Bay for decades.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada.
| | - Michael J Palmer
- North Slave Research Centre, Aurora Research Institute, Aurora College, Yellowknife, Northwest Territories, Canada
| | - Katrina Paudyn
- School of Environmental Studies, Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
| | - Heather Jamieson
- School of Environmental Studies, Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
| | - Marc Amyot
- Département de Sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Reed Harris
- Reed Harris Environmental Ltd., Oakville, Ontario, Canada
| | | | - Nicolas Pelletier
- Carleton University, Geography and Environmental Studies, Ottawa, Ontario, Canada
| | - Ines Peraza
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Sharma S, Futter MN, Spence C, Venkiteswaran JJ, Whitfield CJ. Modelling Subarctic watershed dissolved organic carbon response to hydroclimatic regime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159382. [PMID: 36240938 DOI: 10.1016/j.scitotenv.2022.159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Shifts in hydroclimatic regimes associated with global climate change may impact freshwater availability and quality. In high latitudes of the northern hemisphere, where vast quantities of carbon are stored terrestrially, explaining landscape-scale carbon (C) budgets and associated pollutant transfer is necessary for understanding the impact of changing hydroclimatic regimes. We used a dynamic modelling approach to simulate streamflow, DOC concentration, and DOC export in a northern Canadian catchment that has undergone notable climate warming, and will continue to for the remainder of this century. The Integrated Catchment model for Carbon (INCA-C) was successfully calibrated to a multi-year period (2012-2016) that represents a range in hydrologic conditions. The model was subsequently run over 30-year periods representing baseline and two future climate scenarios. Average discharge is predicted to decrease under an elevated temperature scenario (22-27 % of baseline) but increase (116-175 % of baseline) under an elevated temperature and precipitation scenario. In the latter scenario the nival hydroclimatic regime is expected to shift to a combined nival and pluvial regime. Average DOC flux over 30 years is predicted to decrease (24-27 % of baseline) under the elevated temperature scenario, as higher DOC concentrations are offset by lower runoff. Under the elevated temperature and precipitation scenario, results suggest an increase in carbon export of 64-81 % above baseline. These increases are attributed to greater connectivity of the catchment. The largest increase in DOC export is expected to occur in early winter. These predicted changes in DOC export, particularly under a climate that is warmer and wetter could be part of larger ecosystem change and warrant additional monitoring efforts in the region.
Collapse
Affiliation(s)
- S Sharma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
| | - M N Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - C Spence
- Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - J J Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - C J Whitfield
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada.
| |
Collapse
|
6
|
Kay ML, Jasiak I, Klemt WH, Wiklund JA, Faber JA, MacDonald LA, Telford JVK, Savage CAM, Cooke CA, Wolfe BB, Hall RI. Paleolimnological evaluation of metal(loid) enrichment from oil sands and gold mining operations in northwestern Canada. ENVIRONMENTAL RESEARCH 2023; 216:114439. [PMID: 36174760 DOI: 10.1016/j.envres.2022.114439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.
Collapse
Affiliation(s)
- Mitchell L Kay
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Izabela Jasiak
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Wynona H Klemt
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Johan A Wiklund
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jelle A Faber
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Lauren A MacDonald
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - James V K Telford
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada; Ministry of Forests, Lands, Natural Resource Operations & Rural Development Victoria, British Columbia, V8W 9M1, Canada
| | - Cory A M Savage
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Colin A Cooke
- Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, T5J 5C6, Canada; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
7
|
Neweshy W, Planas D, Tellier E, Demers M, Marsac R, Couture RM. Response of sediment phosphorus partitioning to lanthanum-modified clay amendment and porewater chemistry in a small eutrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1494-1507. [PMID: 35635543 DOI: 10.1039/d1em00544h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustained eutrophication of the aquatic environment by the remobilization of legacy phosphorus (P) stored in soils and sediments is a prevailing issue worldwide. Fluxes of P from the sediments to the water column, referred to as internal P loading, often delays the recovery of water quality following a reduction in external P loads. Here, we report on the vertical distribution and geochemistry of P, lanthanum (La), iron (Fe) and carbon (C) in the culturally eutrophied Lake Bromont. This lake underwent remediation treatment using La modified bentonite (LMB) commercially available as Phoslock™. We investigated the effectiveness of LMB in decreasing soluble reactive phosphorus (SRP) availability in sediments and in reducing dissolved fluxes of P across the sediment-water interface. Sediment cores were retrieved before and after LMB treatment at three sites representing bottom sediment, sediment influenced by lakeside housing and finally littoral sediment influenced by the lake inflow. Sequential extractions were used to assess changes in P speciation. Depth profiles of dissolved porewater concentrations were obtained after LMB treatment at each site. Results indicate that SRP extracted from the sediments decreased at all sites, while total extracted P (PTOT) bound to redox-sensitive metal oxides increased. 31P NMR data on P extract reveals that 20-43% of total solid-phase P is in the form of organic P (Porg) susceptible to be released via microbial degradation. Geochemical modelling of porewater data provides evidence that LaPO4(s) mineral phases, such as rhabdophane and/or monazite, are likely forming. However, results also suggest that La3+ binding by dissolved organic carbon (DOC) hinders La-phosphate precipitation. We rely on thermodynamic modelling to suggest that high Fe2+ would bind to DOC instead of La3+, therefore promoting P sequestrations by LMB under anoxic conditions.
Collapse
Affiliation(s)
- Wessam Neweshy
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Dolors Planas
- Département de Sciences Biologiques, Université de Québec à Montréal, Canada and GRIL (Interuniversity Research Group in Limnology), Montréal, Canada
| | - Elisabeth Tellier
- Action Conservation du Bassin Versant du Lac Bromont, Bromont, Québec, Canada
| | - Marie Demers
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Remi Marsac
- Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, F-35000 Rennes, France
| | - Raoul-Marie Couture
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| |
Collapse
|
8
|
van de Velde SJ, Burdorf LDW, Hidalgo-Martinez S, Leermakers M, Meysman FJR. Cable Bacteria Activity Modulates Arsenic Release From Sediments in a Seasonally Hypoxic Marine Basin. Front Microbiol 2022; 13:907976. [PMID: 35910627 PMCID: PMC9329047 DOI: 10.3389/fmicb.2022.907976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Eutrophication and global change are increasing the occurrence of seasonal hypoxia (bottom-water oxygen concentration <63 μM) in coastal systems worldwide. In extreme cases, the bottom water can become completely anoxic, allowing sulfide to escape from the sediments and leading to the development of bottom-water euxinia. In seasonally hypoxic coastal basins, electrogenic sulfur oxidation by long, filamentous cable bacteria has been shown to stimulate the formation of an iron oxide layer near the sediment-water interface, while the bottom waters are oxygenated. Upon the development of bottom-water anoxia, this iron oxide “firewall” prevents the sedimentary release of sulfide. Iron oxides also act as an adsorption trap for elements such as arsenic. Arsenic is a toxic trace metal, and its release from sediments can have a negative impact on marine ecosystems. Yet, it is currently unknown how electrogenic sulfur oxidation impacts arsenic cycling in seasonally hypoxic basins. In this study, we presented results from a seasonal field study of an uncontaminated marine lake, complemented with a long-term sediment core incubation experiment, which reveals that cable bacteria have a strong impact on the arsenic cycle in a seasonally hypoxic system. Electrogenic sulfur oxidation significantly modulates the arsenic fluxes over a seasonal time scale by enriching arsenic in the iron oxide layer near the sediment-water interface in the oxic period and pulse-releasing arsenic during the anoxic period. Fluxes as large as 20 μmol m−2 day−1 were measured, which are comparable to As fluxes reported from highly contaminated sediments. Since cable bacteria are recognized as active components of the microbial community in seasonally hypoxic systems worldwide, this seasonal amplification of arsenic fluxes is likely a widespread phenomenon.
Collapse
Affiliation(s)
- Sebastiaan J. van de Velde
- Department of Geoscience, Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- *Correspondence: Sebastiaan J. van de Velde
| | - Laurine D. W. Burdorf
- Microbial Systems Technology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Silvia Hidalgo-Martinez
- Microbial Systems Technology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Filip J. R. Meysman
- Microbial Systems Technology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Filip J. R. Meysman
| |
Collapse
|