1
|
Magnuson JT, Fuller N, McGruer V, Huff Hartz KE, Acuña S, Whitledge GW, Lydy MJ, Schlenk D. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120938. [PMID: 36572271 DOI: 10.1016/j.envpol.2022.120938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Gupta P, Mahapatra A, Suman A, Singh RK. In silico and in vivo assessment of developmental toxicity, oxidative stress response & Na +/K +-ATPase activity in zebrafish embryos exposed to cypermethrin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114547. [PMID: 36680990 DOI: 10.1016/j.ecoenv.2023.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2-5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Fuller N, Magnuson JT, Huff Hartz KE, Whitledge GW, Acuña S, McGruer V, Schlenk D, Lydy MJ. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120308. [PMID: 36181938 DOI: 10.1016/j.envpol.2022.120308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Umax) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p'-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Umax of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Umax among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Victoria McGruer
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA.
| |
Collapse
|
4
|
Yancheva V, Georgieva E, Velcheva I, Iliev I, Stoyanova S, Vasileva T, Bivolarski V, Todorova-Bambaldokova D, Zulkipli N, Antal L, Nyeste K. Assessment of the exposure of two pesticides on common carp (Cyprinus carpio Linnaeus, 1758): Are the prolonged biomarker responses adaptive or destructive? Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109446. [PMID: 36030007 DOI: 10.1016/j.cbpc.2022.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
Chlorpyrifos (CPF) and cypermethrin (CYP) are two insecticides that have a proven negative effect on non-target aquatic organisms when they enter the surface waters. However, literature on the comparative effects of these pesticides on important aquaculture fish species, such as common carp (Cyprinus carpio Linnaeus, 1758) is not yet scientifically detailed, especially over the long-term. The idea of conducting a long-term exposure is to find out how the observed biomarkers would change compared to the short-term exposure. In the natural environment, toxicants are not present alone, but in combination. By monitoring the long-term impact of individual substances, the state of aquatic ecosystems exposed to various toxicants could be predicted. Thus, this study aimed to evaluate the toxicity of different concentrations of CYP (0.0002, 0.0003, and 0.0006 μg/L) and CPF (0.03, 0.05, and 0.10 μg/L) in 50-L glass tanks on C. carpio, exposed for 30 days under laboratory conditions. A set of histological and biochemical biomarkers in the gills and liver were applied with the chemical analyses of water and fish organs. Furthermore, the condition and hepatosomatic index were calculated to assess the physiological status of the treated carps. The behavioral responses were also monitored, and the respiration rate was analyzed. The results suggest that CYP had a more prominent effect on the histological structure of fish organs, biochemical responses of anti-oxidant enzymes, behavior, and respiration rate compared to the effect of CPF. In addition, the results also indicate that the liver is more susceptible to chronic and chemically induced cellular stress compared to the gills, with overall destructive changes in the histological biomarkers rather than adaptive. Regardless of the scenario, our results provide novel insights into pesticide exposure and the possible biological impacts on economically important freshwater fish, exposed to lower CYP and CPF concentrations, based on the EU legislation (maximum allowable concentrations, MAC-EQS).
Collapse
Affiliation(s)
- Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Elenka Georgieva
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Iliana Velcheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Stela Stoyanova
- Department of Developmental Biology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | - Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University, 4000 Plovdiv, Bulgaria
| | | | - Nurfatin Zulkipli
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - László Antal
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary.
| | - Krisztián Nyeste
- Department of Hydrobiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; National Laboratory for Water Science and Water Safety, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Magnuson JT, Caceres L, Sy N, Ji C, Tanabe P, Gan J, Lydy MJ, Schlenk D. The Use of Non-targeted Lipidomics and Histopathology to Characterize the Neurotoxicity of Bifenthrin to Juvenile Rainbow Trout ( Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11482-11492. [PMID: 35876619 PMCID: PMC9387103 DOI: 10.1021/acs.est.2c01542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 05/25/2023]
Abstract
Due to the detection frequencies and measured concentrations in surface water, the type I pyrethroid insecticide, bifenthrin, has been of particular concern within the Sacramento-San Joaquin Delta in California. Concentrations have been detected above levels previously reported to impair neuroendocrine function and induce neurotoxicity to several species of salmonids. Metabolomic and transcriptomic studies indicated impairment of cellular signaling within the brain of exposed animals and potential alteration of lipid metabolism. To better understand the potential impacts of bifenthrin on brain lipids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to mean bifenthrin concentrations of 28 or 48 ng/L for 14 days, and non-targeted lipidomic profiling in the brain was conducted. Brain tissue sections were also assessed for histopathological insult following bifenthrin treatment. Bifenthrin-exposed trout had a concentration-dependent decrease in the relative abundance of triglycerides (TGs) with levels of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) significantly altered following 48 ng/L bifenthrin exposure. An increased incidence of histopathological lesions, such as focal hemorrhages and congestion of blood vessels, was noted in the brains of bifenthrin-treated animals, suggesting an association between altered lipid metabolism and neuronal cell structure and integrity.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Leslie Caceres
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Nathan Sy
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Chenyang Ji
- College
of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Philip Tanabe
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Johanif N, Huff Hartz KE, Figueroa AE, Weston DP, Lee D, Lydy MJ, Connon RE, Poynton HC. Bioaccumulation potential of chlorpyrifos in resistant Hyalella azteca: Implications for evolutionary toxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117900. [PMID: 34391048 DOI: 10.1016/j.envpol.2021.117900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Given extensive use of pesticides in agriculture, there is concern for unintended consequences to non-target species. The non-target freshwater amphipod, Hyalella azteca has been found to show resistance to the organophosphate (OP) pesticide, chlorpyrifos, resulting from an amino acid substitution in acetylcholinesterase (AChE), suggesting a selective pressure of unintended pesticide exposure. Since resistant organisms can survive in contaminated habitats, there is potential for them to accumulate higher concentrations of insecticides, increasing the risk for trophic transfer. In the present study, we estimated the uptake and elimination of chlorpyrifos in non-resistant US Lab, and resistant Ulatis Creek (ULC Resistant), H. azteca populations by conducting 24-h uptake and 48-h elimination toxicokinetic experiments with 14C-chlorpyrifos. Our results indicated that non-resistant H. azteca had a larger uptake clearance coefficient (1467 mL g-1 h-1) than resistant animals (557 mL g-1 h-1). The half-life derived from the toxicokinetic models also estimated that steady state conditions were reached at 13.5 and 32.5 h for US Lab and ULC, respectively. Bioaccumulation was compared between non-resistant and resistant H. azteca by exposing animals to six different environmentally relevant concentrations for 28 h. Detection of chlorpyrifos in animal tissues indicated that resistant animals exposed to high concentrations of chlorpyrifos were capable of accumulating the insecticide up to 10-fold higher compared to non-resistant animals. Metabolite analysis from the 28-h concentration experiments showed that between 20 and 50 % parent compound was detected in H. azteca. These results imply that bioaccumulation potential can be more significant in chlorpyrifos resistant H. azteca and may be an essential factor in assessing the full impacts of toxicants on critical food webs, especially in the face of increasing pesticide and chemical runoff.
Collapse
Affiliation(s)
- Nadhirah Johanif
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Alexandra E Figueroa
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Devon Lee
- Department of Biochemistry, California State University, Fresno, CA, 93740, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|