1
|
Zhou J, Xia R, Landis JD, Sun Y, Zeng Z, Zhou J. Isotope Evidence for Rice Accumulation of Newly Deposited and Soil Legacy Cadmium: A Three-Year Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17283-17294. [PMID: 39066705 DOI: 10.1021/acs.est.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years. The enrichment of light Cd isotopes in the atmospheric deposition resulted in a significant shift toward lighter Cd isotopes in rice plants. Using a modified isotopic mass balance model, foliar and root uptake of deposited Cd accounted for 47-51% and 28-36% in leaves, 41-45% and 22-30% in stems, and 45-49% and 26-30% in grains, respectively. The implications of this study are that new atmospheric deposition disproportionately contributes to the uptake of Cd in rice, and managing emissions thus becomes very important versus remediation of impacted soils.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Jiao Y, He D, Zhang S, Cheng M, Chen S, Dong T, Wang L, Huang X. Lanthanum interferes with the fundamental rhythms of stomatal opening, expression of related genes, and evapotranspiration in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116576. [PMID: 38878562 DOI: 10.1016/j.ecoenv.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 μM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 μM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.
Collapse
Affiliation(s)
- Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Ding He
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Shuya Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengzhu Cheng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Si Chen
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Tinglan Dong
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
3
|
Feng LX, Li YN, Geng LP, Gao PP, Li XY, Li DH, Hua GL, Zhao QL, Liu WJ, Xue PY. Foliar uptake screening: A promising strategy for identifying wheat varieties with low lead accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173166. [PMID: 38735315 DOI: 10.1016/j.scitotenv.2024.173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.
Collapse
Affiliation(s)
- Liu-Xu Feng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Yu-Ning Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Li-Ping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Pei-Pei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Xiang-Yu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Ding-Hao Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Gui-Li Hua
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Quan-Li Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Wen-Ju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Pei-Ying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
| |
Collapse
|
4
|
Lin Q, Zhuang MJ, Dai W, Fang J, Zhang BF, Mao JD, Lou LP. Insights into growth stages and genotypes in airborne Pb accumulation in Oryza sativa L. grains: Utilizing isotope fingerprinting alongside a model study. CHEMOSPHERE 2024; 356:141862. [PMID: 38579954 DOI: 10.1016/j.chemosphere.2024.141862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Atmospheric exposure is an important pathway of accumulation of lead (Pb) in Oryza sativa L. grains. In this study, source contributions of soil, early atmospheric exposure, and late atmospheric exposure, along with their bioaccumulation ratios were examined both in the pot and field experiments using stable Pb isotope fingerprinting technology combined with a three-compartment accumulation model. Furthermore, genotype differences in airborne Pb accumulation among four field-grown rice cultivars were investigated using the partial least squares path model (PLS-PM) linking rice Pb accumulation to agronomic traits. The findings revealed that during the late growth period, the air-foliar-grain transfer of Pb was crucial for rice Pb accumulation. Approximately 69-82% of the Pb found in polished rice was contributed by atmospheric source, with more than 80% accumulating during the late growth stage. The air accumulation ratios of rice grains were genotype-specific and estimated to be 0.364-1.062 m3/g during the late growth. Notably, grain size exhibited the highest standardized total effects on the airborne Pb concentrations in the polished rice, followed by leaf Pb and the upward translocation efficiency of Pb. The present study indicates that mitigating the health risks associated with Pb in rice can be achieved by controlling atmospheric Pb levels during the late growth stage and choosing Japonica inbred varieties characterized by large grain size.
Collapse
Affiliation(s)
- Qi Lin
- Department of Environmental Engineering, Zhejiang University, Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, PR China.
| | - Ming-Jin Zhuang
- Department of Environmental Engineering, Zhejiang University, Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, PR China
| | - Wei Dai
- Department of Environmental Engineering, Zhejiang University, Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, PR China
| | - Jing Fang
- Department of Environmental Engineering, Zhejiang University, Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, PR China
| | - Bao-Feng Zhang
- Hangzhou Environmental Monitoring Central Station, Hangzhou, Zhejiang Province, 310007, PR China
| | - Jing-Dong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA, 23529, United States
| | - Li-Ping Lou
- Department of Environmental Engineering, Zhejiang University, Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, PR China.
| |
Collapse
|
5
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
6
|
Chen S, Yu H, Xu L, Fei F, Song Y, Dong M, Li W. Characterizing accumulation and negative effects of aerosol particles on the leaves of urban trees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122812. [PMID: 37898428 DOI: 10.1016/j.envpol.2023.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Urban vegetation can alleviate particulate matter (PM) pollution. Many studies examined the PM retention efficiencies of different plant species, but the PM changes retained on leaf surfaces and their effects on plant leaves have rarely been explored. In this study, two common urban greening tree species of the Yangtze River Delta (i.e., Broussonetia papyrifera and Osmanthus fragrans) were selected to explore the compositions of retained PM and assess their adverse impacts on leaf functional traits. Compared with B. papyrifera, O. fragrans with higher wax content was more efficient in particle accumulation, specifically fine (Φ ≤ 2.5 μm) and coarse (2.5 < Φ ≤ 10 μm) particles. The number density and mass concentration of retained PM on plant leaves tended to increase during the accumulation period. Plant species and accumulation time were two major factors to influence particle retention efficiency. Interestingly, the accumulation of particle retention influenced leaf functional traits, such as photosynthesis rate, stomatal conductance, and transpiration rate. The microscopic observations of PM on leaves confirmed that the toxic components of the retained particles potentially caused leaf injury and stomatal damage. Therefore, the acclimation mechanisms of plants responding to the retained urban aerosols should be paid attention in highly polluted areas.
Collapse
Affiliation(s)
- Siqi Chen
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Liang Xu
- College of Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Fangmin Fei
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaobin Song
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weijun Li
- Department of Atmospheric Science, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Wang Y, Qian X, Chen J, Yuan X, Zhu N, Chen Y, Fan T, Li M, Toland H, Feng Z. Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the "lettuce-snail" food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164799. [PMID: 37302614 DOI: 10.1016/j.scitotenv.2023.164799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and polystyrene microplastics (PS) co-contamination always occurs in environment; however, the trophic transfer of Cd and PS is still poorly understood. A hydroponic experiment was conducted to investigate the behavior of Cd in lettuce, together with the root or foliar exposure of different sized PS. Accumulation and chemical form distributions of Cd in leaves were distinguished into young and mature leaves. Subsequently, a 14-day snail feeding experiment was performed. Data showed that Cd accumulation in roots, rather than in leaves, are significantly affected by PS coexistence. However, mature leaves had a higher Cd content than young leaves under the root exposure of PS, while a reverse effect was observed in the foliar exposure. There existed a positive correlation between the food-chain transfer associated Cd (CdFi+Fii+Fiii) in mature leaves and Cd content in snail soft tissue (r = 0.705, p < 0.001), but not in young leaves. Though no bio-amplification of Cd in food chain was observed, an increase of Cd transfer factor (TF) from lettuce to snail was noted in the root exposure of 5 μm PS and the foliar exposure of 0.2 μm PS. Moreover, we observed a highest increase rate of 36.8 % in TF values from lettuce to snail viscera, and a chronic inflammatory response in snail stomach tissue. Therefore, more attentions should be paid to study the ecological risks of heavy metals and microplastics co-contamination in environment.
Collapse
Affiliation(s)
- Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyue Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yudong Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Harry Toland
- Geography & Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, Wales SY23 3DB, United Kingdom
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
8
|
Ma C, Yu Y, Liu F, Lin L, Zhang K, Liu N, Zhang H. Influence mechanism of awns on wheat grain Pb absorption: Awns' significant contribution to grain Pb was mainly originated from their direct absorption of atmospheric Pb at the late grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114957. [PMID: 37105099 DOI: 10.1016/j.ecoenv.2023.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The spike is the organ that contributes the most to lead (Pb) accumulation in wheat grains. However, as an important photosynthetic and transpiration tissue in spike, the role of awn in wheat grain Pb absorption remains unknown. A field experiment was conducted to investigate the influence mechanism of awn on grain Pb accumulation through two comparative treatments: with and without awns (de-awned treatment). The de-awned treatment decreased wheat yield by 4.1 %; however, it significantly lowered the grain Pb accumulation rate at the late filling stage (15 days after anthesis) and led to a 22.8 % decrease in grain Pb concentration from 0.57 to 0.44 mg·kg-1. Moreover, the relative contribution of awn-to-grain Pb accumulation gradually increased with the filling process, finally reaching 26.6 % at maturity. In addition, Pb isotope source analysis indicated that the Pb in the awn and grain mainly originated from atmospheric deposition, and the de-awned treatment decreased the proportion of grain Pb from atmospheric deposition by 8.9 %. Microstructural observations further confirmed that the contribution of awns to grain Pb accumulation mainly originated from their direct absorption of atmospheric Pb. In conclusion, awns play an important role in wheat grain Pb absorption at the late grain-filling stage; planting awnless or short-awn wheat varieties may be the simplest and effective environmental management measure to reduce the health risks of Pb in wheat in regions with serious atmospheric Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Yawei Yu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino, 62032 Macerata, Italy
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
9
|
Meng Y, Lyu X, Liu J, Gao W, Ma Y, Liao N, Li Z, Bo Y, Hu Z, Yang J, Zhang M. Structural variation of GL1 gene determines the trichome formation in Brassica juncea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:75. [PMID: 36952042 DOI: 10.1007/s00122-023-04301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
A 448 kb region on chromosome B02 was delimited to be associated with trichome trait in Brassica juncea, in which the BjuVB02G54610 gene with a structural variation of 3 kb structure variation (SV) encoding a MYB transcription factor was predicted as the possible candidate gene. Mustards (Brassica juncea) are allopolyploid crops in the worldwide, and trichomes are essential quality attributes that significantly influence its taste and palpability in vegetable-use cultivars. As important accessory tissues from specialized epidermal cells, trichomes also play an important role in mitigating biotic and abiotic stresses. In this study, we constructed a F2 segregating population using YJ27 with intensive trichome leaves and 03B0307 with glabrous leaves as parents. By bulked segregant analysis (BSA-seq), we obtained a 2.1 Mb candidate region on B02 chromosome associated with the trichome or glabrous trait formation. Then, we used 13 Kompetitive Allele Specific PCR (KASP) markers for fine mapping and finally narrowed down the candidate region to about 448 kb in length. Interestingly, among the region, there was a 3 kb sequence deletion that located on the BjuVB02G54610 gene in the F2 individuals with trichome leaves. Genotyping results of F2 populations confirmed this deletion (R2 = 81.44%) as a major QTL. Natural population re-sequencing analysis and genotyping results further validated the key role of the 3 kb structure variation (SV) of insertion/deletion type in trichome development in B. juncea. Our findings provide important information on the formation of trichomes and potential target gene for breeding vegetable mustards.
Collapse
Affiliation(s)
- Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiagolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiaqi Liu
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
| | - Wei Gao
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongming Bo
- Ningbo Weimeng Seed Industry Co.Ltd, Ningbo, People's Republic of China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
10
|
Gao PP, Liang H, Dong Y, Xue PY, Zhao QL, Yan JS, Ma W, Zhao JJ, Liu WJ. Transcriptomic mechanisms of reduced PM 2.5-Pb retention in the leaves of the low-Pb-accumulation genotype of Chinese cabbage. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130385. [PMID: 36403447 DOI: 10.1016/j.jhazmat.2022.130385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) mainly contributes to Pb accumulation in the edible leaves of Chinese cabbage in North China. It was found that a low-Pb-accumulation (LPA) genotype of Chinese cabbage contained less Pb in leaves than high-Pb-accumulation (HPA) genotype exposed to PM2.5-Pb. However, there are no data on the transcriptional regulatory mechanisms of foliar PM2.5-Pb uptake by Chinese cabbage. The present study investigated the retention of PM2.5-Pb in foliar apoplast and symplasm and the underlying molecular mechanisms of reduced Pb in LPA leaves. It appeared more Pb in apoplast and less Pb in symplasm of LPA leaves, whereas the pattern was opposite in HPA. There were 2646 and 3095 differentially expressed genes (DEGs) in LPA and HPA leaves under PM2.5-Pb stress with clearly genotype-specific function, respectively. Furthermore, mRNA levels of XTH16 regulating cell wall thickening, PME2 and PME6 involved in cell wall remodification were significantly expressed in LPA, but not in HPA. Meanwhile, foliar PM2.5-Pb stress downregulated expression of ZIP1, YSL1, and CNGC3 responsible for Pb influx to cell, and upregulated expression of ABCG36 regulated Pb efflux from symplasm in LPA leaves. These results improve our understanding to the mechanisms underlying foliar Pb uptake from PM2.5-Pb at transcriptomic level.
Collapse
Affiliation(s)
- Pei-Pei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Hao Liang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Yan Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Pei-Ying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Quan-Li Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Hebei, Baoding 071000, China
| | - Jing-Sen Yan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Wei Ma
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Jian-Jun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Wen-Ju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China.
| |
Collapse
|
11
|
Yang J, Yu Y, Ma C, Zhang H. Direct absorption of atmospheric lead by rapeseed siliques is the leading cause of seed lead pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130284. [PMID: 36332279 DOI: 10.1016/j.jhazmat.2022.130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Rapeseed cultivation is a novel approach to safely utilizing lead (Pb) contaminated farmland. However, the mechanism of Pb absorption in seeds remains uncertain. A field experiment was conducted to explore this mechanism with two contrasting treatments: rapeseed exposed to atmospheric deposition and non-exposed treatment. Non-exposed treatment ultimately decreased Pb content in leaf, silique, and seed by 46.7%, 53.7%, and 53.6%, respectively. Sub-microstructure analysis further confirmed that rapeseed leaves and siliques could directly absorb atmospheric Pb. In addition, Pb isotope analysis indicates that atmospheric deposition is the primary source of silique and seed Pb. The root and silique organs had relative Pb contributions of 28.0% and 72.0%, respectively, to seed. Thus, the direct absorption of atmospheric Pb by siliques during the filling stage was found to be the leading cause of seed Pb pollution.
Collapse
Affiliation(s)
- Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawei Yu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
12
|
Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41878-41899. [PMID: 36640234 DOI: 10.1007/s11356-023-25174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.
Collapse
|
13
|
Ma C, Lin L, Yang J, Zhang H. The Relative Contributions of Different Wheat Leaves to the Grain Cadmium Accumulation. TOXICS 2022; 10:637. [PMID: 36355929 PMCID: PMC9697351 DOI: 10.3390/toxics10110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the context of increasing atmospheric particles pollution, wheat cadmium (Cd) pollution caused by atmospheric deposition in agro-ecosystems has attracted increasing attention. However, the relative contribution of different wheat leaves-to-grain Cd accumulation is still unclear. We assessed the roles of different wheat leaves on grain Cd accumulation with field-comparative experiments during the filling stage. Results show that wheat leaves can direct uptake atmospheric Cd through stomata, and the flag leaf exhibited a higher Cd concentration compared to other leaves. The relative contribution of the leaves-to-grain Cd accumulation decreased gradually during the grain-filling period, from 34.44% reaching 14.48%, indicating that the early grain-filling period is the critical period for leaf Cd contributions. Moreover, the relative contribution of flag leaves (7.27%) to grain Cd accumulation was larger than that of the sum of other leaves (7.21%) at maturity. Therefore, the flag leaf is the key leaf involved in grain Cd accumulation, and controlling the transport of Cd from leaves to grains at the early filling period, particularly flag leaf, could help to ensure wheat grain safety, thus ensuring the safety of food production.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
14
|
Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake. Life (Basel) 2022; 12:life12030339. [PMID: 35330090 PMCID: PMC8955535 DOI: 10.3390/life12030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
Leafy vegetables cultivated in kitchen gardens and suburban areas often accumulate excessive amounts of heavy metals and pose a threat to human health. For this reason, plenty of studies have focused on low accumulation variety screening. However, identifying specific leafy vegetable varieties according to the foliar uptake of air pollution remains to be explored (despite foliar uptake being an important pathway for heavy-metal accumulation). Therefore, in this study, the lead (Pb) and cadmium (Cd) contents, leaf morphology, and particle matter contents were analyzed in a micro-area experiment using 20 common vegetables. The results show that the Pb content in leaves ranged from 0.70 to 3.86 mg kg−1, and the Cd content ranged from 0.21 to 0.99 mg kg−1. Atmospheric particles were clearly scattered on the leaf surface, and the particles were smaller than the stomata. Considering the Pb and Cd contents in the leaves and roots, stomata width-to-length ratio, leaf area size, enrichment factor, and translocation factor, Yidianhongxiancai, Qingxiancai, Baiyuanyexiancai, Nanjingjiangengbai and Sijixiaobaicai were recommended for planting in kitchen gardens and suburban areas as they have low accumulation characteristics. Identifying the influencing factors in the accumulation of heavy metals in vegetables through foliar uptake is important to help plant physiologists/environmentalists/policy makers to select suitable varieties for planting in air-polluted areas and thus reduce their threat to human health.
Collapse
|