1
|
Passignat C, Flayac J, Lerebourg R, Minguez L. Differential bioconcentration and sensitivity of Dreissena polymorpha and Dreissena rostriformis bugensis to the antidepressant sertraline. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136628. [PMID: 39581030 DOI: 10.1016/j.jhazmat.2024.136628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Sertraline is one of the most widely prescribed antidepressants, worldwide detected in rivers, thus raising concern about its ecotoxicology. However, there is knowledge gap on its pharmacokinetics and pharmacodynamics in freshwater bivalves. Comparative biology can help to gain in understanding and improve our ability to assess ecotoxicological risks in a wide range of species. This study investigated the kinetic-based bioconcentration and depuration of sertraline by two freshwater bivalve species, Dreissena polymorpha (zebra mussel, ZM) and Dreissena rostriformis bugensis (quagga mussel, QM), and (2) its biological effects depending on the exposure duration and frequency. Several biomarkers related to known sertraline side effects in human were followed. Results document a higher body burden in QM than in ZM. The steady-stage was not reached after 5 days of exposure. Bivalves were unable to depurate sertraline in 5 days in clean water. Findings provide evidence that environmentally relevant concentration of sertraline can disturb the physiology of Dreissena species, but not in the same way. QM was found to be more sensitive to sertraline than ZM, experiencing oxidative stress and lipid disorder. Intermittent exposure also led to biochemical changes in the two species, requiring further study.
Collapse
Affiliation(s)
- Céline Passignat
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Pôle de compétences en biologie environnementale, Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Romane Lerebourg
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | | |
Collapse
|
2
|
Song A, Gao Z, Zhou Y, Miao J, Xu R, Pan L. Effects of Benzo[a]pyrene on Food Metabolism and Reproductive Endocrine and Ovarian Development in Female Scallop Chlamys farreri at Different Reproductive Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38088252 DOI: 10.1002/etc.5806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 μg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;00:1-14. © 2023 SETAC.
Collapse
Affiliation(s)
- Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Zhou Y, Xu R, Gao Z, Miao J, Pan L. Insights into mechanism of DNA damage and repair-apoptosis in digestive gland of female scallop Chlamys farreri under benzo[a]pyrene exposure during reproductive stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109738. [PMID: 37661044 DOI: 10.1016/j.cbpc.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 μg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Gao Y, Xie Z, Qian J, Tu Z, Yang C, Deng Y, Xue Y, Shang Y, Hu M, Wang Y. Effects of diel-cycling hypoxia and salinity on lipid metabolism and fatty acid composition of the oyster Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106124. [PMID: 37586224 DOI: 10.1016/j.marenvres.2023.106124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
For marine animals living in estuarine, coastal, and intertidal areas, salinity changes and periodic hypoxia are typical stressors; however, how the varying salinity and dissolved oxygen affect the quality and nutrition of marine aquaculture species, such as oysters remains unknown. In this study, we evaluated the diel-cycling hypoxia under different salinities on fatty acid composition and lipid metabolism in oyster Crassostrea hongkongensis digestive glands. After 28 days of exposure, both hypoxia and elevated salinity caused a decrease in the saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio of C. hongkongensis, salinity mainly causes changes in C17:0, C17:1, C18:1n9, C20:1n9, C20:4n6, C21:5n3, C22:5n3, with high salinity being more damaging to the fatty acid fractions. Also, Hypoxia accelerates the synthesis of C18:1n9 and C20:4n6. Fatty acid synthase (FAS) synthesis is increased by reduced salinity or hypoxia, but Acetyl CoA carboxylase (ACC) only weakly promotes fatty acid synthesis. Under hypoxic conditions, the activity of both hepatic lipase (HL) and lipoprotein lipase activity (LPL) decreases, which is contrary to the results for dissolved oxygen. The increase in salinity under dissolved oxygen leads to a decrease in LPL activity and an increase in HL activity. Our findings highlighted that exposure to a combination of salinity and hypoxia stressors, can disrupt the protective mechanisms of the oyster and affect the function of its lipid metabolism. Therefore, long-term exposure to periodic hypoxia with salinity changes poses a risk to the nutritional quality of C. hongkongensis, affecting oyster aquaculture and the coastal ecosystem.
Collapse
Affiliation(s)
- Yiming Gao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jin Qian
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yucai Xue
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Xu L, Wang Y, Lin S, Li H, Qi P, Buttino I, Wang W, Guo B. Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics. Animals (Basel) 2023; 13:2248. [PMID: 37508026 PMCID: PMC10376264 DOI: 10.3390/ani13142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.
Collapse
Affiliation(s)
- Lezhong Xu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuxia Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Weifeng Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Wang S, Wang Z, Wang X, Qu J, Li F, Ji C, Wu H. Histopathological and transcriptomic analyses reveal the reproductive endocrine-disrupting effects of decabromodiphenyl ethane (DBDPE) in mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160724. [PMID: 36493811 DOI: 10.1016/j.scitotenv.2022.160724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The novel brominated flame retardant DBDPE has become a widespread environmental contaminant and could affect reproductive endocrine system in vertebrates. However, information about reproductive endocrine-disrupting effects of DBDPE on invertebrates is totally unknown. In this study, mussels Mytilus galloprovincialis were exposed to 1, 10, 50, 200 and 500 μg/L DBDPE for 30 days. Histopathological and transcriptomic analyses were performed to assess the reproductive endocrine-disrupting effects of DBDPE in mussels and the potential mechanisms. DBDPE promoted the gametogenesis in mussels of both sexes according to histological observation, gender-specific gene expression (VERL and VCL) and histological morphometric parameter analysis. Transcriptomic analysis demonstrated that DBDPE suppressed the genes related to cholesterol homeostasis and transport in both sexes via different LRPs- and ABCs-mediated pathways. DBDPE also disturbed nongenomic signaling pathway including signaling cascades (GPR157-IP3-Ca2+) in males and secondary messengers (cGMP) in females, and subsequently altered the expression levels of reproductive genes (VMO1, ZAN, Banf1 and Hook1). Additionally, dysregulation of energy metabolism in male mussels induced by DBDPE might interfere with the reproductive endocrine system. Overall, this is the first report that DBDPE evoked reproductive endocrine-disruptions in marine mussels. These findings will provide important references for ecological risk assessment of DBDPE pollution in marine environment.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Zhiyu Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| |
Collapse
|