1
|
Hou R, Wang Y, Deng Y, Zhu B, Zhang J, Zhou Y, Huang W. Engineered biochars for simultaneous immobilization of as and Cd in soil: Field evidence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122764. [PMID: 39383747 DOI: 10.1016/j.jenvman.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Agricultural soil contamination by potentially toxic elements (PTEs) such as arsenic (As) and cadmium (Cd) poses a serious threat to food security. Immobilization serves as a widely used approach for the remediation of PTEs contaminated soils, nevertheless, the long-term effectiveness for the simultaneous immobilization of both cations and oxyanions remains a challenge. In order to effectively enhance the synergistic immobilization effect of soil As and Cd contaminated by multiple elements and improve the ecological environment of farmland. In this study, a typical polluted tailings area farmland was selected for situ immobilization experiments, and biochar was prepared from cow manure (CMB), rice straw (RSB), and pine wood (PWB) as raw materials. On this basis, the pristine biochar was modified with ferric chloride (F), potassium permanganate (K), magnesium chloride (M), and aluminum chloride (A), respectively. Furthermore, the immobilization effect of modified biochar on As-Cd and the stress effect on soil respiration were investigated. The results showed that CMB and RSB reduced the bioavailability of heavy metals, potassium permanganate has strong oxidizing properties, and the strong oxidability of potassium permanganate stimulated the generation of more oxygen-containing functional groups on the surface of biochar, thereby enhancing the adsorption and complexation effect of modified materials on As and Cd. Among them, the extracted Cd concentration of Diethylenetriamine pentaacetic acid (DTPA) in KCMB and KRSB in 2020 decreased by 8.23-43.12% and 9.67-35.29% compared to other treatments, respectively. Meanwhile, the KCMB and KRSB treatments also reduced the enrichment of As and Cd in plant tissues. In addition, the dissolved organic carbon (DOC) content in KCMB treatment was relatively high, and the carbon stability of the material was weakened. Simultaneously, the soil respiration emission of KCMB treatment was increased by 5.63% and 11.93% compared to KRSB and KPWB treatments, respectively. In addition, the structural equation also shows that DOC has a large positive effect on soil respiration. In summary, the KRSB treatment effectively achieve synergistic immobilization of As-Cd and provide important guiding significance for green and low-carbon remediation of polluted farmland.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuxuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanling Deng
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yulu Zhou
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| | - Wei Huang
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| |
Collapse
|
2
|
Chen L, Hu J, Wang H, He Y, Deng Q, Wu F. Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173955. [PMID: 38879031 DOI: 10.1016/j.scitotenv.2024.173955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The screening and design of "green" biochar materials with high adsorption capacity play a pivotal role in promoting the sustainable treatment of Cd(II)-containing wastewater. In this study, six typical machine learning (ML) models, namely Linear Regression, Random Forest, Gradient Boosting Decision Tree, CatBoost, K-Nearest Neighbors, and Backpropagation Neural Network, were employed to accurately predict the adsorption capacity of Cd(II) onto biochars. A large dataset with 1051 data points was generated using 21 input variables obtained from batch adsorption experiments, including preparation conditions for biochar (2 features), physical properties of biochar (4 features), chemical composition of biochar (9 features), and adsorption experiment conditions (6 features). The rigorous evaluation and comparison of the ML models revealed that the CatBoost model exhibited the highest test R2 value (0.971) and the lowest RMSE (20.54 mg/g), significantly outperforming all other models. The feature importance analysis using Shapley Additive Explanations (SHAP) indicated that biochar chemical compositions had the greatest impact on model predictions of adsorption capacity (42.2 %), followed by adsorption conditions (37.57 %), biochar physical characteristics (12.38 %), and preparation conditions (7.85 %). The optimal experimental conditions optimized by partial dependence plots (PDP) are as follows: as high Cd(II) concentration as possible, C(%) of 33 %, N(%) of 0.3 %, adsorption time of 600 min, pyrolysis time of 50 min, biochar dosage of less than 2 g/L, O(%) of 42 %, biochar pH value of 11.2, and DBE of 1.15. This study unveils novel insights into the adsorption of Cd(II) and provides a comprehensive reference for the sustainable engineering of biochars in Cd(II) wastewater treatment.
Collapse
Affiliation(s)
- Long Chen
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jian Hu
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanying He
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qianyi Deng
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Wu Y, Feng H, Tang J, Yang Z, Lan C, Guo Y, Tang L. Selective Capacitive Removal of Pb 2+ from Wastewater over Biochar Electrodes by Zinc Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311401. [PMID: 38348946 DOI: 10.1002/smll.202311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
Biochar materials have shown great potential for broad catalytic application. However, using these materials in the capacitive deionization technology (CDI) system for heavy metal removal still faces a significant challenge due to their low specific capacity and removal capability. Here, a comprehensive regulation on the interfacial/bulk electrochemistry of biochar by Zn doping is reported, which suggests a high renewable capacity (20 mg g-1) and outstanding selective capacitive removal ability (SCR) of Pb2+ from leachate. The SCR efficiency of Pb2+ is as high as 99% compared to K+ (8%), Na+ (13%), and Cd2+ (37%). This work proves that the doped Zn on the biochar can combine with OH- generated by water splitting to form M─OH bonds, which is beneficial for improving the specific capacity. Significantly, the relationship between double-layer capacitance and pseudo-capacitance can also be optimized by regulating the content of Zn, leading to different removal abilities of heavy metals. Therefore, this work offers insights into charge-storage kinetics, which provide valuable guidelines for designing and optimizing the biochar electrode for broader environmental applications.
Collapse
Affiliation(s)
- Yangfeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhenhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Yuyao Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Liu S, Feng Z, Ma Y, Li J, Wang Y, Sun T. Hierarchically porous graphene-like biochar for efficient removal of aromatic pollutants and their structure-performance relationship: A combined experimental, MD and DFT study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121758. [PMID: 37142208 DOI: 10.1016/j.envpol.2023.121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Development of high-efficiency adsorbents and exploration of the structure-performance relationship holds exciting implications for removal of aromatic pollutants (APs) from water. Herein, hierarchically porous graphene-like biochars (HGBs) were successfully prepared by K2CO3 simultaneous graphitization and activation of Physalis pubescens husk. The HGBs possess high specific surface area (1406-2369.7 m2/g), hierarchically meso-/microporous structure and high graphitization degree. The optimized HGB-2-9 sample exhibits rapid adsorption equilibrium time (te) and high adsorption capacities (Qe) for seven widely-used persistent APs with different molecular structures (e.g., phenol: te = 7 min, Qe = 191.06 mg/g; methylparaben: te = 12 min Qe = 482.15 mg/g). HGB-2-9 also shows a wide pH (3-10) suitability and good ionic strength (0.01-0.5 M NaCl) resistance properties. The effects of the physicochemical properties of HGBs and APs on the adsorption performance were deeply investigated by the adsorption experiments, molecular dynamics (MD) and density functional theory (DFT) simulation. The results demonstrate that the large specific surface area, high graphitization degree and hierarchically porous structure of HGB-2-9 can supply more active sites on accessible surface and facilitate the transport of APs. And the aromaticity and hydrophobicity of APs play the more crucial roles during the adsorption process. Besides, the HGB-2-9 presents good recyclability and high removal efficiency for APs in various real water, which further confirms its potential for practical applications.
Collapse
Affiliation(s)
- Shujian Liu
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Zhongmin Feng
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Youliang Ma
- School of Humanities and Sciences, Ningxia Institute of Science and Technology, Shizuishan, 753000, China
| | - Jiali Li
- School of Humanities and Sciences, Ningxia Institute of Science and Technology, Shizuishan, 753000, China
| | - Yun Wang
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
5
|
Mo G, Xiao J, Gao X. NaHCO 3 activated sludge-derived biochar by KMnO 4 modification for Cd(II) removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57771-57787. [PMID: 36971938 DOI: 10.1007/s11356-023-26638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
The surface flat pristine biochar provides limited adsorption sites for Cd(II) adsorption. To address this issue, a novel sludge-derived biochar (MNBC) was prepared by NaHCO3 activation and KMnO4 modification. The batch adsorption experiments illustrated that the maximum adsorption capacity of MNBC was twice that of pristine biochar and reached equilibrium more quickly. The pseudo-second order and Langmuir model were more suitable for analyzing the Cd(II) adsorption process on MNBC. Na+, K+, Mg2+, Ca2+, Cl- and NO-3 had no effect on the Cd(II) removal. Cu2+ and Pb2+ inhibited the Cd(II) removal, while PO3-4 and humic acid (HA) promoted it. After 5 repeated experiments, the Cd(II) removal efficiency on MNBC was 90.24%. The Cd(II) removal efficiency of MNBC in different actual water bodies was over 98%. Furthermore, MNBC owned excellent Cd(II) adsorption performance in fixed bed experiments, and the effective treatment capacity was 450 BV. The co-precipitation, complexation, ion exchange and Cd(II)-π interaction were involved in Cd(II) removal mechanism. XPS analysis showed that NaHCO3 activation and KMnO4 modification enhanced the complexation ability of MNBC to Cd(II). The results suggested that MNBC can be used as an effective adsorbent for treating of Cd-contaminated wastewater.
Collapse
Affiliation(s)
- Guanhai Mo
- Department of Water Engineering and Science, School of Civil Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| | - Jiang Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiang Gao
- Powerchina Zhongnan Engineering Corporation Co., Ltd, Changsha, 410000, People's Republic of China
| |
Collapse
|