1
|
Ye F, Wang Y, Duan L, Wu W, Huang Y, Wang J, Chen Y, Zhao Z. Nitrous oxide (N 2O) emissions at the air-water-sediment interfaces of cascade reservoirs in the Yunnan-Guizhou Plateau: Spatial patterns and environmental controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124436. [PMID: 38925220 DOI: 10.1016/j.envpol.2024.124436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The construction of cascade reservoirs can interfere with the natural hydrologic cycles of basins, causing negative environmental effects such as altering the emission patterns of the Nitrous oxide (N2O), a potent greenhouse gas. To elucidate the impact of cascade reservoirs construction on river N2O emissions, we utilized the thin boundary model and the incubation experiments to estimate the N2O fluxes at the air-water interface and at the water-sediment interface of cascade reservoirs on the Yunnan-Guizhou Plateau, respectively. Additionally, we explored the influence of various factors, with particular emphasis on damming, on N2O emissions and production. Moreover, we identified the main pathways of N2O production and proposed management strategies to mitigate N2O emissions from cascade reservoirs. The findings revealed that N2O fluxes at the air-water interface and the water-sediment interface were 4.73 ± 1.32 μmol m-2 · d-1 and 15.56 ± 1.98 μmol m-2 · d-1, respectively. Influenced by temperature, dissolved oxygen (DO), resource substances (active nitrogen substrates and dissolved organic carbon (DOC)) and reservoir properties (scale, hydraulic retention time (HRT), reservoir age, etc.), the N2O concentration and flux exhibited notable spatial heterogeneity, gradually increasing downstream. Temperature has a significant direct impact on N2O flux, as well as indirect effects through DO and resource chemicals. Furthermore, the correlation between dissolved oxygen utilization rate (AOU) and net N2O flux (ΔN2O) indicated that N2O emissions at the water-air interface were primarily attributable to nitrification, whereas those at the water-sediment interface were predominantly driven by denitrification. These findings not only enhance our comprehension of N2O emissions at various interfaces of cascade reservoirs but also offer theoretical backing for the formulation of management strategies aimed at efficiently mitigating N2O emissions from continuously dammed rivers.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Yi Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Lei Duan
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China.
| | - Wei Wu
- Xi'an University of Technology, Xi'an, 710048, China
| | - Yaqi Huang
- Xi'an University of Technology, Xi'an, 710048, China
| | - Jiawei Wang
- Xi'an University of Technology, Xi'an, 710048, China
| | - Yue Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Zhengzheng Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| |
Collapse
|
2
|
Saha A, Das BK, Tiwari NK, Chauhan S, Jana C, Ramteke M, Johnson C, Baitha R, Swain HS, Ray A, Das Gupta S, Gogoi P, Kayal T. Dynamics of sediment phosphorus in the middle and lower stretch of River Ganga, India: insight into concentration, fractionation, and environmental risk assessment of phosphorus. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:336. [PMID: 39060460 DOI: 10.1007/s10653-024-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Despite continuous efforts, eutrophication is still occurring in freshwater and phosphorus (P) is the most important nutrients that drive the eutrophication in rivers and streams. However, little information is available about the distribution of P fractions in river sediment. Here, the sequential extraction approach was used to evaluate the sediment P fractionation and its content in the anthropogenically damaged river Ganga, India. Different sedimentary P fractions viz. exchangeable (Ex-P), aluminum bound (Al-P), iron bound (Fe-P), calcium bound (Ca-P), and organically bound phosphorus (Org-P), were quantified. Significantly higher level of total P was recorded in pre-monsoon season (438.5 ± 95.8 mg/kg), than other [winter (345.7 ± 110.6 mg/kg), post-monsoon (319.2 ± 136.3 mg/kg), and monsoon (288.6 ± 77.3 mg/kg)] seasons. Different P fractions such as Ex-P, Al-P, Fe-P, Ca-P and Org-P varied from 2.88-12.8 mg/kg, 7.64-98.8 mg/kg, 32.2-179.2 mg/kg, 51.97-286.1 mg/kg and 9.3-143.7 mg/kg, respectively, which correspondingly represented 0.5-10.54%, 3.41-20.18%, 17.27-37.82%, 37.35-60.2%, 4.15-25.88% of the Total P with a rank order of P-fractions was Ca-P > Fe-P > Org-P > Al-P > Ex-P. Bio-available P contributes a considerable portion (37.9-46.0%) of total P which may increase the eutrophication to overlying water. Results demonstrate that inorganic P species control the P bio-availability in both time and space. However, an estimated phosphorus pollution index based on sediment total P content showed no ecological risk of phosphorus to Ganga River sediment.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Nitish Kumar Tiwari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Suraj Chauhan
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Mitesh Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Canciyal Johnson
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Raju Baitha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Himanshu Sekhar Swain
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Archisman Ray
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| |
Collapse
|
3
|
Du W, Li J, Zhang G, Yu K, Liu S. Spatiotemporal Variations in Co-Occurrence Patterns of Planktonic Prokaryotic Microorganisms along the Yangtze River. Microorganisms 2024; 12:1282. [PMID: 39065051 PMCID: PMC11278652 DOI: 10.3390/microorganisms12071282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria and archaea are foundational life forms on Earth and play crucial roles in the development of our planet's biological hierarchy. Their interactions influence various aspects of life, including eukaryotic cell biology, molecular biology, and ecological dynamics. However, the coexistence network patterns of these microorganisms within natural river ecosystems, vital for nutrient cycling and environmental health, are not well understood. To address this knowledge gap, we systematically explored the non-random coexistence patterns of planktonic bacteria and archaea in the 6000-km stretch of the Yangtze River by using high-throughput sequencing technology. By analyzing the O/R ratio, representing the divergence between observed (O%) and random (R%) co-existence incidences, and the module composition, we found a preference of both bacteria and archaea for intradomain associations over interdomain associations. Seasons notably influenced the co-existence of bacteria and archaea, and archaea played a more crucial role in spring as evidenced by their predominant presence of interphyla co-existence and more species as keystone ones. The autumn network was characterized by a higher node or edge number, greater graph density, node degree, degree centralization, and nearest neighbor degree, indicating a more complex and interconnected structure. Landforms markedly affected microbial associations, with more complex networks and more core species found in plain and non-source areas. Distance-decay analysis suggested the importance of geographical distance in shaping bacteria and archaea co-existence patterns (more pronounced in spring). Natural, nutrient, and metal factors, including water temperature, NH4+-N, Fe, Al, and Ni were identified as crucial determinants shaping the co-occurrence patterns. Overall, these findings revealed the dynamics of prokaryotic taxa coexistence patterns in response to varying environmental conditions and further contributed to a broader understanding of microbial ecology in freshwater biogeochemical cycling.
Collapse
Affiliation(s)
- Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Jiacheng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guohua Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhang Z, Xu D, Huang T, Zhang Q, Li Y, Zhou J, Zou R, Li X, Chen J. High levels of cadmium altered soil archaeal activity, assembly, and co-occurrence network in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171529. [PMID: 38453065 DOI: 10.1016/j.scitotenv.2024.171529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Soil microbial communities are essential to biogeochemical cycles. However, the responses of microorganisms in volcanic soil with high heavy metal levels remain poorly understood. Here, two areas with high levels of cadmium (Cd) from the same volcano were investigated to determine their archaeal composition and assembly. In this study, the Cd concentrations (0.32-0.38 mg/ kg) in the volcanic soils exceeded the standard risk screening values (GB15618-2018) and correlated with archaeal communities strongly (P < 0.05). Moreover, the area with elevated levels of Cd (periphery) exhibited a greater diversity of archaeal species, albeit with reduced archaeal activity, compared to the area with lower levels of Cd (center). Besides, stochastic processes mainly governed the archaeal communities. Furthermore, the co-occurrence network was simplest in the periphery. The proportion of positive links between taxa increased positively with Cd concentration. Moreover, four keystone taxa (all from the family Nitrososphaeraceae) were identified from the archaeal networks. In its entirety, this study has expanded our comprehension of the variations of soil archaeal communities in volcanic areas with elevated cadmium levels and serves as a point of reference for the agricultural development of volcanic soils in China.
Collapse
Affiliation(s)
- Zihua Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, Inner Mongolia, China
| | - Tao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yingyue Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Shang Y, Wang X, Wu X, Dou H, Wei Q, Wang Q, Liu G, Sun G, Wang L, Zhang H. Bacterial and fungal community structures in Hulun Lake are regulated by both stochastic processes and environmental factors. Microbiol Spectr 2024; 12:e0324523. [PMID: 38602397 PMCID: PMC11064641 DOI: 10.1128/spectrum.03245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Microorganisms are a crucial component of lake ecosystems and significant contributors to biogeochemical cycles. However, the understanding of how primary microorganism groups (e.g., bacteria and fungi) are distributed and constructed within different lake habitats is lacking. We investigated the bacterial and fungal communities of Hulun Lake using high-throughput sequencing techniques targeting 16S rRNA and Internal Transcribed Spacer 2 genes, including a range of ecological and statistical methodologies. Our findings reveal that environmental factors have high spatial and temporal variability. The composition and community structures vary significantly depending on differences in habitats. Variance partitioning analysis showed that environmental and geographical factors accounted for <20% of the community variation. Canonical correlation analysis showed that among the environmental factors, temperature, pH, and dissolved oxygen had strong control over microbial communities. However, the microbial communities (bacterial and fungal) were primarily controlled by the dispersal limitations of stochastic processes. This study offers fresh perspectives regarding the maintenance mechanism of bacterial and fungal biodiversity in lake ecosystems, especially regarding the responses of microbial communities under identical environmental stress.IMPORTANCELake ecosystems are an important part of the freshwater ecosystem. Lake microorganisms play an important role in material circulation and energy flow owing to their unique enzymatic and metabolic capacity. In this study, we observed that bacterial and fungal communities varied widely in the water and sediments of Hulun Lake. The primary factor affecting their formation was identified as dispersal limitation during stochastic processes. Environmental and geographical factors accounted for <20% of the variation in bacterial and fungal communities, with pH, temperature, and dissolved oxygen being important environmental factors. Our findings provide new insights into the responses of bacteria and fungi to the environment, shed light on the ecological processes of community building, and deepen our understanding of lake ecosystems. The results of this study provide a reference for lake management and conservation, particularly with respect to monitoring and understanding microbial communities in response to environmental changes.
Collapse
Affiliation(s)
- Yongquan Shang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xibao Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiaoyang Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Qinguo Wei
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Qi Wang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Gang Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Guolei Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lidong Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
6
|
Ma J, Yao Z, Zhang M, Gao J, Li W, Yang W. Microbial and environmental medium-driven responses to phosphorus fraction changes in the sediments of different lake types during the freezing period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25147-25162. [PMID: 38468006 DOI: 10.1007/s11356-024-32798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.
Collapse
Affiliation(s)
- Jie Ma
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhi Yao
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
- School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Mingyu Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Jingtian Gao
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Weiping Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China.
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| |
Collapse
|
7
|
Di F, Han D, Wang G, Zhao W, Zhou D, Rong N, Yang S. Characteristics of bacterial community structure in the sediment of Chishui River (China) and the response to environmental factors. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104335. [PMID: 38520935 DOI: 10.1016/j.jconhyd.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Sediment microorganisms performed an essential function in the biogeochemical cycle of aquatic ecosystems, and their structural composition was closely related to environmental carrying capacity and water quality. In this study, the Chishui River (Renhuai section) was selected as the research area, and the concentrations of environmental factors in the water and sediment were detected. High⁃throughput sequencing was adopted to reveal the characteristics of bacterial community structures in the sediment. In addition, the response of bacteria to environmental factors was explored statistically. Meanwhile, the functional characteristics of bacterial were also analyzed based on the KEGG database. The results showed that the concentration of environmental factors in the water and sediment displayed spatial differences, with the overall trend of midstream > downstream > upstream, which was related to the wastewater discharge from the Moutai town in the midstream directly. Proteobacteria was the most dominant phylum in the sediment, with the relative abundance ranged from 52.06% to 70.53%. The distribution of genus-level bacteria with different metabolic activities varied in the sediment. Upstream was dominated by Massilia, Acinetobacter, and Thermomonas. In the midstream, Acinetobacter, Cloacibacterium and Comamonas were the main genus. Nevertheless, the abundance of Lysobacter, Arenimonas and Thermomonas was higher in the downstream. Redundancy analysis (RDA) showed that total nitrogen (TN) and total phosphorus (TP) were the main environmental factors which affected the structure of bacterial communities in sediment, while total organic carbon (TOC) was the secondary. The bacterial community was primarily associated with six biological pathway categories such as metabolism. Carbohydrate metabolism and amino acid metabolism were the most active functions in the 31 subfunctions. This study could contribute to the understanding of the structural composition and driving forces of bacteria in the sediment, which might benefit for the ecological protection of Chishui River.
Collapse
Affiliation(s)
- Fei Di
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Donghui Han
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China.
| | - Guang Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Wenbo Zhao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Daokun Zhou
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Nan Rong
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| | - Shou Yang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, China
| |
Collapse
|
8
|
Hu Y, Chen M, Pu J, Chen S, Li Y, Zhang H. Enhancing phosphorus source apportionment in watersheds through species-specific analysis. WATER RESEARCH 2024; 253:121262. [PMID: 38367374 DOI: 10.1016/j.watres.2024.121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Phosphorus (P) is a pivotal element responsible for triggering watershed eutrophication, and accurate source apportionment is a prerequisite for achieving the targeted prevention and control of P pollution. Current research predominantly emphasizes the allocation of total phosphorus (TP) loads from watershed pollution sources, with limited integration of source apportionment considering P species and their specific implications for eutrophication. This article conducts a retrospective analysis of the current state of research on watershed P source apportionment models, providing a comprehensive evaluation of three source apportionment methods, inventory analysis, diffusion models, and receptor models. Furthermore, a quantitative analysis of the impact of P species on watersheds is carried out, followed by the relationship between P species and the P source apportionment being critically clarified within watersheds. The study reveals that the impact of P on watershed eutrophication is highly dependent on P species, rather than absolute concentration of TP. Current research overlooking P species composition of pollution sources may render the acquired results of source apportionment incapable of assessing the impact of P sources on eutrophication accurately. In order to enhance the accuracy of watershed P pollution source apportionment, the following prospectives are recommended: (1) quantifying the P species composition of typical pollution sources; (2) revealing the mechanisms governing the migration and transformation of P species in watersheds; (3) expanding the application of traditional models and introducing novel methods to achieve quantitative source apportionment specifically for P species. Conducting source apportionment of specific species within a watershed contributes to a deeper understanding of P migration and transformation, enhancing the precise of management of P pollution sources and facilitating the targeted recovery of P resources.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jia Pu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yao Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
9
|
Cao Y, Zhu J, Gao Z, Li S, Zhu Q, Wang H, Huang Q. Spatial dynamics and risk assessment of phosphorus in the river sediment continuum (Qinhuai River basin, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2198-2213. [PMID: 38055174 DOI: 10.1007/s11356-023-31241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.
Collapse
Affiliation(s)
- Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Sanjun Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailong Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
10
|
Liu S, Lin Y, Liu T, Xu X, Wang J, Chen Q, Sun W, Dang C, Ni J. Planktonic/benthic Bathyarchaeota as a "gatekeeper" enhance archaeal nonrandom co-existence and deterministic assembling in the Yangtze River. WATER RESEARCH 2023; 247:120829. [PMID: 37976624 DOI: 10.1016/j.watres.2023.120829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Archaea, the third proposed domain of life, mediate carbon and nutrient cycling in global natural habitats. Compared with bacteria, our knowledge about archaeal ecological modes in large freshwater environments subject to varying natural and human factors is limited. By metabarcoding analysis of 303 samples, we provided the first integrate biogeography about archaeal compositions, co-existence networks, and assembling processes within a 6000 km continuum of the Yangtze River. Our study revealed that, among the major phyla, water samples owned a higher proportion of Thaumarchaeota (62.8%), while sediments had higher proportions of Euryarchaeota (33.4%) and Bathyarchaeota (18.8%). A decline of polarization in phylum abundance profile was observed from plateau/mountain/hill to basin/plain areas, which was attributed to the increase of nutrients and metals. Planktonic and benthic Bathyarchaeota tended to co-occur with both major (e.g., methanogens or Thermoplasmata) and minor (e.g., Asgard or DPANN) taxa in the non-random networks, harboring the highest richness and abundances of keystone species and contributing the most positively to edge number, node degree, and nearest neighbor degree. Furthermore, we noted significantly positive contributions of Bathyarchaeota abundance and network complexity to the dominance of deterministic process in archaeal assembly (water: 65.3%; sediments: 92.6%), since higher carbon metabolic versatility of Bathyarchaeota would benefit archaeal symbiotic relations. Stronger deterministic assembling was identified at the lower-reach plain, and higher concentrations of ammonium and aluminum separately functioning as nutrition and agglomerator were the main environmental drivers. We lastly found that the Three Gorges Dam caused a simultaneous drop of benthic Bathyarchaeota abundance, network co-existence, and deterministic effects immediately downstream due to riverbed erosion as a local interference. These findings highlight that Bathyarchaeota are a "gatekeeper" to promote fluvial archaeal diversity, stability, and predictability under varying macroscopic and microscopic factors, expanding our knowledge about microbial ecology in freshwater biogeochemical cycling globally.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Yahsuan Lin
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China.
| |
Collapse
|
11
|
Fang C, He Y, Yang Y, Fu B, Pan S, Jiao F, Wang J, Yang H. Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131813. [PMID: 37339576 DOI: 10.1016/j.jhazmat.2023.131813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Microplastics (MPs) are 1-5 mm plastic particles that are serious global contaminants distributed throughout marine ecosystems. However, their impact on intertidal sediment microbial communities is poorly understood. In this study, we conducted a 30-day laboratory tidal microcosm experiment to investigate the effects of MPs on microbial communities. Specifically, we used the biodegradable polymers polylactic acid (PLA) and polybutylene succinate (PBS), as well as the conventional polymers polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE). Treatments with different concentrations (1-5%, w/w) of PLA- and PE-MPs were also included. We analyzed taxonomic variations in archaeal and bacterial communities using 16S rRNA high-throughput sequencing. PLA-MPs at concentrations of 1% (w/w) rapidly altered microbiome composition. Total organic carbon and nitrite nitrogen were the key physicochemical factors and urease was the major enzyme shaping MP-exposed sediment microbial communities. Stochastic processes predominated in microbial assembly and the addition of biodegradable MPs enhanced the contribution of ecological selections. The major keystone taxa of archaea and bacteria were Nitrososphaeria and Alphaproteobacteria, respectively. MPs exposure had less effect on archaeal functions while nitrogen cycling decreased in PLA-MPs treatments. These findings expanded the current understanding of the mechanism and pattern that MPs affect sediment microbial communities.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
12
|
Wan L, Cao L, Song C, Cao X, Zhou Y. Regulation of the Nutrient Cycle Pathway and the Microbial Loop Structure by Different Types of Dissolved Organic Matter Decomposition in Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:297-309. [PMID: 36576880 DOI: 10.1021/acs.est.2c06912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To explore the effect of different types of dissolved organic matter (DOM) decomposition on nutrient cycling pathways and the microbial loop, four lakes with different DOM sources were investigated monthly. In Lake Tangxun, Dolichospermum decay released highly labile dissolved organic nitrogen into the water column. This induced bacterial organic nitrogen decomposition, as indicated by the increased abundance of gltB, gltD, gdh, and glnA as well as aminopeptidase activity. Genes associated with dissimilatory nitrate reduction to ammonium further fueled ammonium accumulation, driving Microcystis blooms in the summer. In Lake Zhiyin, fish bait deposits (high nitrogen, similar to Dolichospermum detritus) also caused Microcystis blooms. Detritus from Microcystis decomposition then produced high levels of labile dissolved organic phosphorus, inducing phosphatase activity and increasing soluble reactive phosphorus concentrations from September to April in Lakes Tangxun and Zhiyin. The high refractory DOM from macrophytes in Lake Houguan led to insufficient nutrient availability, leading to nutrient mutualism between algae and bacteria. The high levels of labile dissolved organic carbon from terrestrial detritus in Lake Yandong increased bacterial biomass and production, resulting in low chlorophyll content due to the competitive relationship between algal and bacterial nutrient requirements. Therefore, different DOM compositions induce unique connections among available nutrients, algae, and bacteria in the microbial loop.
Collapse
Affiliation(s)
- Lingling Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
- University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| |
Collapse
|