1
|
Yadav A, Yadav P, Bojjagani S, Srivastava JK, Raj A. Investigation of the speciation and environmental risk of heavy metals in biochar produced from textile sludge waste by pyrolysis at different temperatures. CHEMOSPHERE 2024; 360:142454. [PMID: 38810801 DOI: 10.1016/j.chemosphere.2024.142454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/09/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The aim of the present study was to find environmentally friendly solutions for the disposal of problematic and toxic textile sludge (TS) by producing textile sludge biochar (TSB) by pyrolysis and evaluating its chemical properties, polycyclic aromatic hydrocarbon (PAH) content, heavy metals (HMs) speciation, environmental risks, and effects on seed germination. Pyrolysis of TS at temperatures ranging from 300 to 700 °C significantly reduced (85-95%) or eliminated certain PAHs in the biochar, enriched heavy metal content within land use limits, and increased bioavailability of HMs in biochar produced at 300 °C and decreased leaching capacity of HMs in biochar produced at 700 °C. The speciation of HMs and their bioavailability during pyrolysis processes was strongly temperature dependent, with lower temperatures increasing the toxic and bioavailable forms of Zn and Ni, while higher temperatures converted the bioavailable Ni to a more stable form, while Cu, Cr, and Pb were transformed from stable to toxic and bioavailable forms. The ecological risk index (RI) values of TSB-300 and TSB-700 are below the threshold value of 150, indicating a low-risk level, and the risk level decreases at temperatures above 500 °C. Further, the extracts of TSB-300 and TSB-700 had the highest percentage of germinating seeds, while the extracts of TS and TSB-500 inhibited seed germination by 20-30% compared to the control. These results indicate that pyrolysis effectively reduces PAHs and binds leachable HMs in biochar, however, the specific pyrolysis temperature influences metal speciation, bioavailability, seed germination, and environmental risk.
Collapse
Affiliation(s)
- Ashutosh Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Pooja Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhour (Near Railway Station) Gomti Nagar Extension, Lucknow, 227105, India
| | - Sreekanth Bojjagani
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Janmejai Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhour (Near Railway Station) Gomti Nagar Extension, Lucknow, 227105, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
2
|
Shoaib M, Jamshaid H, Mishra RK, Ali M, Chandan V, Kolar V, Nazari S, TM A, Jirku P, Muller M, Ivanova TA. Facile-Solution-Processed Silicon Nanofibers Formed on Recycled Cotton Nonwovens as Multifunctional Porous Sustainable Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:412. [PMID: 38255580 PMCID: PMC10821013 DOI: 10.3390/ma17020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on the above-mentioned problems using the treatment of silicon coating and formation of nanofibers via facile-solution processing. The findings revealed that the use of an economic and eco-friendly superhydrophobic (contact angle higher than 150°) modification of porous nonwovens with silicon nanofibers significantly enhanced their intrinsic characteristics. Notable improvements in their compactness/density and a substantial change in micro porosity were observed after a nanofiber network was formed on the nonwoven material. This optimized sample exhibited a superior performance in terms of stiffness, surpassing the untreated samples by 25-60%. Additionally, an significant enhancement in tear strength was observed, surpassing the untreated samples with an impressive margin of 70-90%. Moreover, the nanofibrous network of silicon fibers on cotton waste (CW) showed significant augmentation in heat resistance ranging from 7% to 24% and remarkable sound absorption capabilities. In terms of sound absorption, the samples exhibited a performance comparable to the commercial standard material and outperformed the untreated samples by 20% to 35%. Enhancing the micro-roughness of fabric via silicon nanofibers induced an efficient resistance to water absorption and led to the development of inherent self-cleaning characteristics. The antibacterial capabilities observed in the optimized sample were due to its superhydrophobic nature. These characteristics suggest that the proposed nano fiber-treated nonwoven fabric is ideal for multifunctional applications, having features like enhanced moisture resistance, pest resistance, thermal insulation, and sound absorption which are essential for wall covers in housing.
Collapse
Affiliation(s)
- Muhammad Shoaib
- School of Engineering and Technology, National Textile University, Faislabad 37610, Pakistan; (M.S.); (H.J.)
| | - Hafsa Jamshaid
- School of Engineering and Technology, National Textile University, Faislabad 37610, Pakistan; (M.S.); (H.J.)
| | - Rajesh Kumar Mishra
- Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (V.C.); (V.K.); (P.J.); (M.M.)
| | - Mumtaz Ali
- School of Engineering and Technology, National Textile University, Faislabad 37610, Pakistan; (M.S.); (H.J.)
| | - Vijay Chandan
- Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (V.C.); (V.K.); (P.J.); (M.M.)
| | - Viktor Kolar
- Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (V.C.); (V.K.); (P.J.); (M.M.)
| | - Shabnam Nazari
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (S.N.); (T.A.I.)
| | - Akshat TM
- Department of Machine Design and Mechanism, Faculty of Mechanical Engineering, Technical University of Liberec, 46 117 Liberec, Czech Republic;
| | - Petr Jirku
- Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (V.C.); (V.K.); (P.J.); (M.M.)
| | - Miroslav Muller
- Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (V.C.); (V.K.); (P.J.); (M.M.)
| | - Tatiana Alexiou Ivanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (S.N.); (T.A.I.)
| |
Collapse
|
3
|
Chaudhary S, Goyal S, Umar A. Fabrication of biogenic carbon-based materials from coconut husk for the eradication of dye. CHEMOSPHERE 2023; 340:139823. [PMID: 37586494 DOI: 10.1016/j.chemosphere.2023.139823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The highly biocompatible nature of carbon dots (CQDs) and potential usage in waste water treatment makes them as one of the effective alternative for treating water pollution. Herein, biogenic carbon dots (CQDs) with size range of 2 nm were prepared from waste coconut husk as a precursor source. The hydrophilic nature and higher surface area of as prepared CQDs has further supported the superior adsorption efficiency of more than 90% for Victoria blue B (VB) dye from waste water samples. Different dye adsorption parameters including adsorbate and adsorbent dosage, pH of reaction media and equilibrium time have been optimized and found that 8 mg of adsorbent was sufficient to remove 70 mg VB dye in 4 mL aqueous solution in 60 min at pH = 7. The adsorption kinetic (2nd order) and isotherms (Freundlich-type) were well followed on prepared CQDs. The reusability studies up to 5 times with minimal decrement of 4% confirm the constancy of CQDs for the adsorptive removal of VB. The methodology presents a greener way for overcoming ecological issues with sustainable materials in an economical manner.
Collapse
Affiliation(s)
- Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Sandeep Goyal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Lin SL, Zhang H, Chen WH, Song M, Kwon EE. Low-temperature biochar production from torrefaction for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2023; 387:129588. [PMID: 37558107 DOI: 10.1016/j.biortech.2023.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a carbon-rich and por ous material derived from waste biomass resources, has demonstrated tremendous potential in wastewater treatment. Torrefaction technology offers a favorable low-temperature biochar production method, and torrefied biochar can be used not only as a solid biofuel but also as a pollutant adsorbent. This review compares torrefaction technology with other thermochemical processes and discusses recent advancements in torrefaction techniques. Additionally, the applications of torrefied biochar in wastewater treatment (dyes, oil spills, heavy metals, and emerging pollutants) are comprehensively explored. Many studies have shown that high productivity, high survival of oxygen-containing functional groups, low temperature, and low energy consumption of dried biochar production make it attractive as an adsorbent for wastewater treatment. Moreover, used biochar's treatment, reuse, and safe disposal are introduced, providing valuable insights and contributions to developing sustainable environmental remediation strategies by biochar.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hongjie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Mengjie Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Dai L, Xie Y, Zhang Y, Wang Y. Treatment of bisphenol pollutant in water by N,P-co-doped carbon nanosheet: Fast degradation, toxicity elimination and reaction mechanism investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121586. [PMID: 37044253 DOI: 10.1016/j.envpol.2023.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Metal-free carbon catalysts perform well in peroxymonosulfate-based advanced oxidation process for the treatment of organic pollutant-containing wastewater. Herein, a natural biomolecule of adenosine triphosphate (ATP), containing abundant N and P elements, served as sole precursor to prepare N,P-co-doped carbon through one-step anoxic pyrolysis, which was applied as peroxymonosulfate activator to treat bisphenol-contaminated water. Owing to the endogenous N and P elements in ATP, in-situ doping was achieved for the prepared carbon material with excellent doping effect, such as high doping amount and numerous defects. During pyrolysis process, the generated gases facilitated the exfoliation of carbon structure, resulting in a nanosheet-like morphology with large specific surface area, e.g., 852.75 m2 g-1 for NPCN-900 sample obtained at 900 °C. Benefiting from the structural modulation brought by N,P co-doping, typical sample of NPCN-900 presented excellent catalytic performance towards bisphenol AF (BPAF) degradation through PMS activation. An apparent reaction rate constant of 0.4115 min-1 was calculated under the investigated reaction conditions. Further studies indicated that 1O2, surface-bound •OH and SO4-• worked together in NPCN-900/PMS system for BPAF degradation. Graphitic N, pyrrolic N, CO groups, defect structure and the doped P atoms in NPCN-900 contributed to PMS activation. It was also important that the toxicity of BPAF solution could be preliminarily eliminated after treatment by NPCN-900/PMS system, which was verified by ecotoxicity assessments through ECOSAR program and green algae growth experiments.
Collapse
Affiliation(s)
- Linli Dai
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Xie
- Moutai Institute, Renhuai, 564507, China
| | - Yongkui Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yabo Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Zhang D, Zhou D, Lu L, Zhang M, Lü T, Huang J, Zhao H, Zhou J, Rinklebe J. Preferential, synergistic sorption and reduction of Cr(VI) from chromium-rhodamine B mixed wastewater by magnetic porous biochar derived from wasted Myriophyllum aquaticum biomass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121593. [PMID: 37030599 DOI: 10.1016/j.envpol.2023.121593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Eradication of heavy metals and dyes simultaneously from wastewater is urgently needed to safeguard public and environmental health. In this study, magnetic porous biochar derived from wasted Myriophyllum aquaticum (MPMaB) was synthesized by KOH-activation and co-precipitation method to treat chromate and rhodamine B (RhB)-bearing wastewater. The KOH activation significantly improved the pore structure of biochar with a high specific surface area of 937.1 m2 g-1. The sorption performance of MPMaB for Cr(VI) and RhB in single and co-solutes conditions was evaluated. In single system, a pH-dependent sorption pattern for Cr(VI) by MPMaB was revealed and the estimated sorption capability reached 175.4 mg g-1, whereas the Langmuir-based sorption capacity of RhB was 175.4 mg g-1 pH-independently. MPMaB partially transformed Cr(VI) to less toxic Cr(III) (approximately 59.3%). Synergistic sorption of Cr(VI) with the coexistence of RhB was observed, where synergistic effect ranged from 119% to 527% depending on pH. For example, the sorption capacity of Cr(VI) on MPMaB, at pH 2, augmented from 175.4 mg g-1 (single system) to 208.3 mg g-1 (binary system). Preferential sorption of Cr(VI) was found and was further confirmed by the post-sorption of Cr(VI) (or RhB) by MPMaB pre-sorbed with RhB (or chromate). Chromate sorption mechanisms mainly include electrostatic interactions and complexation, while the sorption of RhB is ascribed to π-π interactions, pore filling and hydrogen bonding. Additionally, MPMaB showed excellent reusability and maintained high removal efficiency after 5 cycles. In short, MPMaB can efficiently treat chromium and dyes-containing wastewater as sustainable and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Danli Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| | - Ming Zhang
- Department of Environmental Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Hongting Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jie Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
7
|
Pandit C, Pandit S, Pant M, Ghosh D, Agarwal D, Lahiri D, Nag M, Ray RR. A Concise Review on the Synthesis, and Characterization of the Pyrolytic Lignocellulosic Biomass for Oil, Char and Gas Production: Recent Advances and its Environmental Application. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|