1
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Yu R, Hou Q, Deng H, Xiao L, Liu K, Wu Y, Qiao G. Molecular identification and expression patterns of sweet cherry HIPPs and functional analysis of PavHIPP16 in cold stress. PLANTA 2024; 260:134. [PMID: 39505755 DOI: 10.1007/s00425-024-04567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION The HIPP proteins are involved in low-temperature stress, the growth of sweet cherry, and may be potential targets for genetic improvement. PavHIPP16 improved cold resistance in Arabidopsis. In response to abiotic stressors, the heavy metal-associated isoprenylated plant protein (HIPP) proteins play a crucial regulatory role. Although the function of HIPP has been identified in some plants, there have been fewer systematic studies conducted on sweet cherry (Prunus avium L.). Therefore, we performed a comprehensive analysis and expression profiling of PavHIPPs using bioinformatics, RT-PCR, and qRT-PCR techniques. Our findings revealed that 28 PavHIPP genes were unevenly distributed across eight chromosomes. We predicted nine motifs in PavHIPP proteins and observed similar gene structures among highly homologous proteins. The promoter sequences of PavHIPPs contained numerous regulatory elements associated with an adversity of stress. The expression levels of some members showed varying degrees of change under low-temperature treatment. These genes were differentially expressed during flower and fruit development. Arabidopsis overexpressing the PavHIPP16 (OE) gene showed significantly lower relative conductivity and malondialdehyde (MDA) content compared with the wild-type (WT) plants under cold environment. Conversely, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and proline content were significantly higher in OE Arabidopsis than in WT plants. Overall, our results suggest that PavHIPP16 OE Arabidopsis thaliana exhibited enhanced adaptability compared to WT plants under cold conditions. This study provides a foundation for future investigations of the pathways regulating sweet cherry growth and development mediated by the HIPP genes.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yawei Wu
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
4
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Li M, Wu L, Shi Y, Wu L, Afzal F, Jia Y, Huang Y, Hu B, Chen J, Huang J. Bioinformatics and Functional Analysis of OsASMT1 Gene in Response to Abiotic Stress. Biochem Genet 2024:10.1007/s10528-024-10774-w. [PMID: 38582819 DOI: 10.1007/s10528-024-10774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
The study aimed to elucidate the functional characteristics of OsASMT1 gene under copper (Cu) or sodium chloride (NaCl) stress. Bioinformatics scrutiny unveiled that OsASMT1 is situated on chromosome 9. Its protein architecture, comprising dimerization and methyltransferase domains, showed significant similarities to OsASMT2 and OsASMT3. High expression in roots and panicles, along with abiotic stress putative cis-regulatory elements in the promoter, indicated potential stress responsiveness. Real-time quantitative PCR confirmed OsASMT1 induction under Cu and NaCl stress in rice. Surprisingly, yeast expressing OsASMT1 did not exhibit enhanced resistance to abiotic stresses. The results of subcellular localization analysis indicated that OsASMT1 plays a role in the cytoplasm. While OsASMT1 responded to Cu and NaCl stress in rice, its heterologous expression in yeast failed to confer abiotic stress resistance, highlighting the need for further investigation of its functional implications.
Collapse
Affiliation(s)
- Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Farhan Afzal
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanru Jia
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 61130, Sichuan, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
6
|
Li H, Song Liu X, Sun D, Min Yang Z. A long non-coding RNA associated with H3K7me3 methylation negatively regulates OsZIP16 transcription under cadmium stress. Gene 2024; 901:148173. [PMID: 38242376 DOI: 10.1016/j.gene.2024.148173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cadmium (Cd) is a toxic environmental pollutant, posing a high risk to crop production and human health. However, the genetic mechanisms for regulation of Cd accumulation in crops are poorly understood. In this study, we functionally identified a novel long non-coding RNA (lncRNA, TCONS_00502780) that repressed a locus encoding an uncharacterized metal transporter ZIP16 (ZRT/IRT-like Protein) in rice. LncRNA-OsZIP16 (L16) is resident in the antisense strand of OsZIP16. Both L16 and OsZIP16 were transcriptionally expressed during the life cycle, but under Cd stress the L16 transcription was repressed, whereas the OsZIP16 expression was upregulated. OsZIP16 is localized to the endoplasmic reticulum. Knocking out OsZIP16 by CRISPR-Cas9 (C16) resulted in Cd sensitivity, manifested by reduced plant growth and intense cellular damage with a slightly higher Cd translocation from roots to shoots, suggesting that OsZIP16 expression is required for rice growth and development under Cd stress. Conversely, OsZIP16 constitutive overexpression (OE16) lines displayed a growth phenotype compatible to the wide-type with lower Cd translocation ratio from roots to shoots. L16 knock-down lines by RNA interference (L16-R) showed a similar phenotype to the OE16 lines, while the L16 overexpression (L16-OE) lines were phenotypically similar to the C16 lines. The OsZIP16 transcription was upregulated in the L16-R lines but downregulated in the L16-OE lines. Using an antibody against the trimethylation of histone H3 lysine 27 (H3K27me3) followed by chromatin immunoprecipitation (ChIP), we found the reduced H3K27me3 methylation marks surrounding the OsZIP16 gene under Cd stress. Further examination of H3K27me3 in the L16-R lines revealed that the methylation levels were also significantly lower than those in WT. Taken together, these data suggest that the L16 could negatively regulate the OsZIP16 transcriptional expression through an epigenetic mechanism for rice adaption to Cd stress.
Collapse
Affiliation(s)
- He Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
8
|
Liu XS, Li H, Feng SJ, Yang ZM. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice. Gene 2024; 892:147900. [PMID: 37839767 DOI: 10.1016/j.gene.2023.147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Environmental contaminants such as cadmium (Cd) pose high risks to crop production and human health. The genetic basis for regulation of Cd stress-responsive genes for plant adaptation to adverse environments remains poorly understood. In this study, we characterized a rice Zeta family glutathione-S-transferase (OsGSTZ4) gene for Cd detoxification. Heterologous expression of OsGSTZ4 in a yeast (Saccharomyces cerevisiae) conferred cellular Cd tolerance. Transgenic rice overexpressing OsGSTZ4 improved plant growth, attenuated Cd-induced toxicity, and accumulated more Cd in roots. OsGSTZ4 transcription was rapidly induced 3 h after Cd exposure and then declined to the basal level. This was followed by (days after Cd treatment) by CHH hypermethylation (by 41.2 %) at a MITE (Miniature Inverted-repeat Transposable Element) transposable element (TE) inserted in the 5'-untranscribed region (UTR) (-1,722 ∼ -1,392 bp) of OsGSTZ4. Meanwhile, three 24-nt siRNAs derived from the TE (-1,722 ∼ -1,471 bp) were detected and was also rapidly enriched under Cd stress. To validate the possibility that Cd-induced change in OsGSTZ4 expression correlates with the siRNAs-involved CHH methylation through an RdDM (RNA-directed DNA methylation) pathway, genetic analyses were performed. We found that the CHH methylation at the promoter and transcript level of OsGSTZ4 were compromised in the osdrm2 (loss of function for CHH methylation) and osrdr2i (defective in RNA-dependent RNA polymerase 2) but did not change in other types of methyltransferases such as osmet1, ossdg714 or osros1. Promoter deletion analyses confirmed that the siRNA target sequences were essential for the proper expression of OsGSTZ4. Our studies reveal an unusual feedback mechanism by which the Cd-induced rapid OsGSTZ4 expression for Cd tolerance would interplay with the late CHH hypermethylation to silence the TE through the 24-nt siRNAs- and Osdrm2-mediated RdDM pathway, and help understand the diversity of gene regulation via an epigenetic mechanism for rice adaptation to the environmental stress.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Jie Chen Z, Yan Zhai X, Liu J, Zhang N, Yang H. Detoxification and catabolism of mesotrione and fomesafen facilitated by a Phase II reaction acetyltransferase in rice. J Adv Res 2023; 51:1-11. [PMID: 36494064 PMCID: PMC10491983 DOI: 10.1016/j.jare.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The excessive dosage of pesticides required for agronomic reality results in growing contamination of pesticide residues in environment, thus bringing high risks to crop production and human health. OBJECTIVES This study aims to unveil a novel mechanism for catabolism of two pesticides MTR and FSA facilitated by an uncharacterized Phase II reaction enzyme termed acetyltransferase-1 (ACE1) in rice and to make assessment of its potential for bioremediation to minimize the risks to crop production and food safety. METHODS We developed genetically improved cultivars overexpressing OsACE1 (OE) and knockout mutant lines by CRISPR-Cas9 technology to identify the MTR and FSA detoxic and metabolic functions and characterized their metabolites and conjugates by HPLC-LTQ-MS/MS. RESULTS OsACE1 overexpression conferred rice resistance to toxicity of MTR/FSA compared to wild-type, manifested by improved plant elongation and biomass, attenuated cellular injury, and increased chlorophyll accumulation. The OE plants accumulated significantly less parent MTR/FSA and more degradative metabolites, and removed MTR/FSA from their growth medium by 1.38 and 1.61 folds over the wild-type. In contrast, knocking out OsACE1 led to compromised growth fitness and intensified toxic symptoms under MTR/FSA stress and accumulation of more toxic MTR and FSA in rice. The reduced metabolites of MTR and FSA detected in the Cas9 plants suggest the impaired capability of OsACE1 function. CONCLUSIONS These results signified that OsACE1 expression is required for detoxifying the two poisoning chemicals in rice and plays a critical role in accelerating breakdown of the pesticides mainly through Phase II reaction mechanism pathways.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. PLANTA 2023; 258:36. [PMID: 37395789 DOI: 10.1007/s00425-023-04187-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MAIN CONCLUSION This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.
Collapse
Affiliation(s)
- Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Guangdong Zhao
- College of Life Sciences, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Lin Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xiaoming Cai
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xuejiao Yuan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Shi Y, Jiang W, Li M, Jiang N, Huang Y, Wang M, Du Z, Chen J, Li J, Wu L, Zhong M, Yang J, Huang J. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.). Int J Biol Macromol 2023; 245:125607. [PMID: 37390996 DOI: 10.1016/j.ijbiomac.2023.125607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in regulating heavy metal responding activities in plants. Yet only a handful of studies have characterized the functions of HIPPs. In this study, a novel HIPP member OsHIPP17 was functionally characterized, which was involved in the tolerance of yeast and plants to cadmium (Cd). The Cd accumulation in yeast cells was increased due to the overexpression of OsHIPP17. Nevertheless, the overexpression of OsHIPP17 in Arabidopsis thaliana resulted in compromised growth under Cd stress. Meanwhile, the mutation of OsHIPP17 resulted in 38.9-40.9 % increase of Cd concentration in rice roots as well as 14.3-20.0 % decrease of Cd translocation factor. Further investigation of the genes responsible for Cd absorption and transporter indicated that the expression levels of these genes were also perturbed. In addition, two OsHIPP17-interacting proteins, OsHIPP24 and OsLOL3 were identified in a yeast two hybrid assay. Further analysis of their functions revealed that OsHIPP24 or OsLOL3 may be involved in the regulation of Cd tolerance by OsHIPP17 in rice. All above results implied that OsHIPP17 may affect Cd resistance by regulating the absorption and translocation of Cd in rice.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
| | - Mengting Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan 611130, China
| | - Jiahao Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ju Yang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| |
Collapse
|
12
|
Wei Y, Peng X, Wang X, Wang C. The heavy metal-associated isoprenylated plant protein (HIPP) gene family plays a crucial role in cadmium resistance and accumulation in the tea plant (Camellia sinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115077. [PMID: 37257351 DOI: 10.1016/j.ecoenv.2023.115077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are only distributed in vascular plants, and are essential for the detoxification and vascular transport of heavy metals in plants. However, the HIPP gene family has not been thoroughly explored in the tea plant (Camellia sinensis). In this study, we systematically identified 56C. sinensis CsHIPP genes from five groups and characterized their phylogeny, structures, and the features of the encoded proteins. The expression patterns of CsHIPP genes in various tissues of C. sinensis were investigated based on a previous RNA-seq data analysis. The expression patterns of CsHIPP genes were explored in cadmium (Cd)-treated C. sinensis roots using our RNA-seq data. Three CsHIPP genes (CsHIPP22, CsHIPP24, and CsHIPP36) with high expression levels in Cd-treated C. sinensis roots were selected as candidate genes associated with Cd tolerance. Overexpression of CsHIPP22, CsHIPP24, and CsHIPP36 in a yeast mutant (ycf1) rescued Cd-sensitive ycf1 yeast and increased the yeast resistance to Cd stress, implying that these three CsHIPPs might be involved in Cd tolerance. These findings will enable the roles of HIPPs in Cd absorption and detoxification to be better understood as well as improving our understanding of the Cd-resistance and Cd-accumulation mechanisms in tea plant.
Collapse
Affiliation(s)
- Yunfeng Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xuqian Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaojing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Scienceand Technology, Hubei EngineeringUniversity, Xiaogan 432000, China.
| |
Collapse
|
13
|
Qiao Y, Zhang N, Liu J, Yang H. Interpretation of ametryn biodegradation in rice based on joint analyses of transcriptome, metabolome and chemo-characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130526. [PMID: 36463741 DOI: 10.1016/j.jhazmat.2022.130526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Agrochemicals such as pesticide residues become environmental contaminants due to their ecotoxic risks to plant, animal and human health. Ametryn (AME) is a widely used farmland pesticide and its residues are widespread in soils, surface stream and groundwater. However, its toxicological and degradative mechanisms in plants and food crops are largely unknown. This study comprehensively investigated AME toxicology and degradation mechanisms in a paddy crop. AME was freely absorbed by rice roots, translocated to the above-ground and thus repressed plant elongation, and reduced dry weight and chlorophyll concentration, but increased oxidative injury and subcellular electrolyte permeability. Analysis of the transcriptome and metabolome revealed that exposure to AME evoked global AME-responsive genes and step-wise catabolism of AME. We detected 995 (roots) and 136 (shoots) upregulated and differentially expressed genes (DEGs) in response to AME. Metabolomic profiling revealed that many basal metabolites such as carbohydrates, amino acids, glutathione, hormones and phenylpropanoids involved in AME catabolism were accordingly accumulated in rice. Eight metabolites and twelve conjugates of AME were characterized by HPLC-Q-TOF-HRMS/MS. These AME metabolites and conjugates are closely related to DEGs, differentially accumulated metabolites (DAMs) and activities of antioxidative enzymes. Collectively, our work highlights the specific mechanisms for AME degradative metabolism through Phase I and II reactive pathways (e.g. hydroxylation and dealkylation), with will help develop genetically engineered rice used to bioremediate AME-contaminated paddy soils and minimize AME accumulation rice crops.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Khan IU, Qi SS, Gul F, Manan S, Rono JK, Naz M, Shi XN, Zhang H, Dai ZC, Du DL. A Green Approach Used for Heavy Metals 'Phytoremediation' Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040725. [PMID: 36840073 PMCID: PMC9964337 DOI: 10.3390/plants12040725] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Farrukh Gul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin-Ning Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiyan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Inspection and Testing Certificate, Changzhou Vocational Institute Engineering, Changzhou 213164, China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|