1
|
Li Z, Liu C, Ren Z, Liu J, Ma X, Ning Z, Meng J, Liu A, Ma H, Wang L, Chen L, Wang H, Kong S. Unintended side effect of the coal-to-gas policy in North China Plain: Migration of the sources and health risks of ambient PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178050. [PMID: 39671942 DOI: 10.1016/j.scitotenv.2024.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Ongoing coal-to-gas (CTG) largely cut down both coal consumption and associated PM2.5. However, a knowledge gap still existed in CTG impacts on the other energy and organic pollutant emissions. Coupling on-site investigation with statistical yearbooks, we provided a more realistic energy evolutions before (BCTG), during (DCTG), and after (ACTG) the CTG for Hebei Province. Together, we examined the impacts of CTG derived energy conversion on PM2.5-bound PAHs at urban (UA)/suburban rural (SRA)/remote rural (RRA) sites in winter 2022. As expected, the consumptions of coal and natural gas (NG) far decreased and increased from BCTG to ACTG, respectively. Accidentally, biomass usage rose by 60.7%, and rural CTG acted as a main driver. Specially, SRA's NG-shortage and coal-stove demolition should be the main inducements, and RRA's coal-sale ban was another trigger in the early stage of CTG. ∑18PAHs and ∑8TPAHs stand for the sum of 18 PAHs and 8 toxic PAHs, respectively. ∑18PAHs (ng/m3) presented as SRA (81.8) > RRA (46.4) > UA (19.4). Biomass burning (BB) and NG combustion (NGC) contributed most to∑18PAHs of 31.0% and 23.1% at SRA, resulting in the highest ∑18PAHs, ∑18PAHs/PM2.5, and ∑8TPAHs/PM2.5, and incremental lifetime cancer risk values. Also, NGC has become the second largest contributor at UA. Variations in both diagnostic ratios and source-depend isomers further proved the prominence of NGC related PAHs at UA vs. SRA. Notably, RRA was least affected by the CTG, coal combustion (CC, 40.4%) and BB (32.6%) still occupied the top positions. In short, CTG gave rise to an upsurge in biomass usage, and the incremental PAHs emissions from BB vs. NGC. This study underlined that the priorities should be given to rural NG guarantee and subsidy retention, and biomass prohibition for further air quality improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Chen Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhuangzhuang Ren
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Jinming Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Xiaohua Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhi Ning
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Jianwei Meng
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Aiqin Liu
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Huichun Ma
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Lei Wang
- Hebei Key Lab of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Lan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Wang DQ, Jia SM, Yang PF, Zhu FJ, Ma WL. Size-resolved gas-particle partitioning of polycyclic aromatic hydrocarbons in a large temperature range of 50 ℃. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135607. [PMID: 39208636 DOI: 10.1016/j.jhazmat.2024.135607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Size-resolved gas-particle partitioning of semi-volatile organic compounds (SVOCs) can affect their environmental behaviors and health effects, which has not been widely studied in comparing with the gas-total suspended particle partitioning. Herein, the size-resolved gas-particle partitioning quotient (KPi) of polycyclic aromatic hydrocarbons (PAHs) in a large temperature range (-20.6 ℃ ∼ 29.4 ℃) was firstly comprehensively studied. The log KPi values of PAHs related to fine particles were significantly higher than those related to coarse particles. When the logarithm of subcooled liquid-vapor pressure (log PL0) ∈ [-7, -1), the regression slopes of log KPi vs log PL0 related to the particle size > 1.0 µm were shallower than those with the particle size range of 0.10-1.0 µm, which indicated the influence of particle size on KPi. Among the three previous prediction equations of gas-particle partitioning quotient, the empirical equation based on the ambient temperature matched better with the measured log KPi. Therefore, a new prediction equation including ambient temperature and particle size as the two major parameters was established. For most particle size ranges, the new equation showed better prediction performance than the three previous equations. In summary, this study provided new insights for the size-resolved gas-particle partitioning mechanism and quotient.
Collapse
Affiliation(s)
- De-Qi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
3
|
Wang DQ, Jia SM, Liu LY, Zhang ZF, Zhu FJ, Ma WL. Pollution characteristics, source apportionment and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134643. [PMID: 38776815 DOI: 10.1016/j.jhazmat.2024.134643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have the capability for solar radiation absorption related to climate forcing. Herein, pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity were comprehensively investigated. The mean concentrations of Σ18PAHs in all the 11 particle size ranges were 3.95 ± 4.77 × 104 pg/m3 and 2.17 ± 1.54 × 103 pg/m3 in heating period (HP) and non-heating period (NHP), respectively. Except for most PAHs with 2 and 3 benzene rings in NHP, most other PAHs showed a unimodal distribution pattern with the peak at 0.56-1.0 µm in both periods, which was caused by PAH emission sources. The PAH-related climate forcing was mainly caused by the solar radiation absorptions at ∼325 (∼330) nm and ∼365 nm. In general, the absorption intensities were higher in HP than NHP. The absorption intensity in the particle size range of 0.56-1.0 µm was the highest, and benzo[e]pyrene was the dominant contributor. In colder periods in HP, higher PAH concentrations caused more intensive PAH-related climate forcing. This study provided new insights for pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles, which will be useful for better understanding PAH-related climate forcing.
Collapse
Affiliation(s)
- De-Qi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
4
|
Chen Y, Ge C, Liu Z, Xu H, Zhang X, Shen T. Characteristics, sources and health risk assessment of trace metals and polycyclic aromatic hydrocarbons in PM 2.5 from Hefei, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7651-7663. [PMID: 37407725 DOI: 10.1007/s10653-023-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
Trace metals (TRs) and polycyclic aromatic hydrocarbons (PAHs) are major toxic components of fine particulate matter (PM2.5) and related to various health adverse outcomes. The study aims to get a better understanding of the contents, sources and risks of PM2.5-bounded TRs and PAHs in Hefei, China, during the period of 2019-2021. We collected 504 samples and measured twelve TRs and sixteen priority PAHs by inductively coupled plasma mass spectrometry and high-performance liquid chromatography. The annual mass concentrations of PM2.5 was fluctuated in the year of 2019-2021 at 50.95, 47.48 and 59.38 μg/m3, with seasonal variations in rank order of winter > spring > autumn > summer. The median concentrations of PM2.5-bounded ƩTRs and ƩPAHs were also fluctuated, 132.85, 80.93 and 120.27 ng/m3 for ƩTRs, 2.57, 5.85 and 2.97 ng/m3 for ƩPAHs, in the year of 2019, 2020 and 2021, respectively. Seasonal variations of ƩTRs and ƩPAHs show the highest concentration in winter. Positive matrix factorization was used for identified pollution emission sources, and TRs mainly originated from coal combustion, traffic emission and fugitive dust, while PAHs stemmed from biomass, diesel, gasoline and coal combustion. Health risk assessment indicated that adults were more vulnerable than children, the carcinogenic risk assessment of As and Cr manifested a certain degree of cancer risk (1.0 × 10-6 < CR < 1.0 × 10-4) in adults group, and health risks of TRs were higher than PAHs in Hefei. These findings suggest that PM2.5-bounded TRs and PAHs should be considered when making emission control strategies for air pollution, and winter, combustion sources and adults should achieve more policy attention to decrease exposure risks in Hefei.
Collapse
Affiliation(s)
- Yiqun Chen
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Chengxiang Ge
- Hefei Center for Disease Control and Prevention, Hefei, 230022, China
| | - Zikai Liu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huaizhou Xu
- Shenzhen Ecological Environment Intelligent Control Center, Shenzhen, 518034, China
| | - Xia Zhang
- Anhui Institute of Electron Production Supervision and Inspection, Hefei, 230061, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Lee WR, Dangal P, Cormier S, Lomnicki S, Sly PD, Vilcins D. Household characteristics associated with environmentally persistent free radicals in house dust in two Australian locations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.22.23297367. [PMID: 37961661 PMCID: PMC10635157 DOI: 10.1101/2023.10.22.23297367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The association between air pollution and adverse health outcomes has been extensively studied, and while oxidative stress in likely to be involved, the underlying mechanism(s) remain unclear. Recent studies propose environmentally persistent free radicals (EPFRs) as the missing connection between air pollution and detrimental health impacts. However, the indoor environment is rarely considered in EPFR research. We measured EPFRs in household dust from two locations in Australia and investigated household characteristics associated with EPFRs. Random forest models were built to identify important household characteristics through variable importance plots and the associations were analysed using Spearman's rho test. We found that age of house, type of garage, house outer wall material, heating method used in home, frequency of extractor fan use when cooking, traffic related air pollution, frequency of cleaning and major house renovation were important household characteristics associated with EPFRs in Australian homes. The direction of association between household characteristics and EPFRs differ between the locations. Hence, further research is warranted to determine the generalisability of our results.
Collapse
|
6
|
Ai J, Qin W, Chen J, Sun Y, Yu Q, Xin K, Huang H, Zhang L, Ahmad M, Liu X. Pollution characteristics and light-driven evolution of environmentally persistent free radicals in PM 2.5 in two typical northern cities of China. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131466. [PMID: 37099909 DOI: 10.1016/j.jhazmat.2023.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Environmentally persistent free radicals (EPFRs) in PM2.5 can pose significant health risks by generating reactive oxygen species (ROS). In this study, Beijing and Yuncheng were chosen as two representative northern cities of China that mainly relied on natural gas and coal respectively as the energy source for domestic heating in winter. The pollution characteristics and exposure risks of EPFRs in PM2.5 around the heating season of 2020 were investigated and compared between the two cities. Through laboratory simulation experiments, the decay kinetics and secondary formation of EPFRs in PM2.5 collected in both cities were also studied. EPFRs in PM2.5 collected in Yuncheng in the heating period showed longer lifetime and lower reactivity, suggesting that EPFRs originated from coal combustion were more stable in the atmosphere. However, the generation rate of hydroxyl radical (·OH) by the newly formed EPFRs in PM2.5 in Beijing under ambient conditions was 4.4 times of that in Yuncheng, suggesting higher oxidative potential of EPFRs from the atmospheric secondary processes. Accordingly, the control strategies of EPFRs and their health risks were raised for the two cities, which would also have direct implication for the control of EPFRs in other areas of similar atmospheric emission and reaction patterns.
Collapse
Affiliation(s)
- Jing Ai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Weihua Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
| | - Yuewei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Ke Xin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Huiying Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Lingyun Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Mushtaq Ahmad
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xingang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Santos JL, de Souza GL. Probing the water hydrogen-bonding effects on the ground and low-lying excited states of phenanthroline isomers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|