1
|
Zhang Y, Zhang Y, Xie J, Yuan C, Zhu D, Shi X. Vertical migration and leaching behavior of antibiotic resistance genes in soil during rainfall: Impact by long-term fertilization. WATER RESEARCH 2024; 267:122508. [PMID: 39342704 DOI: 10.1016/j.watres.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
The vertical migration and leaching behavior of antibiotic resistance genes (ARGs) during rainfall in soils subjected to long-term fertilization remain largely unclear. In this study, ARGs in vertical profiles (0-60 cm) and leachates from three soils (acidic, neutral, and calcareous) in a long-term (13 years) field fertilization experiment were monitored by high-throughput quantitative PCR after each rainfall event throughout an entire year. The results showed that, compared with unfertilized soils, long-term manure fertilization mainly promoted the vertical migration and leaching of aminoglycoside, beta-lactam, and multidrug resistance genes in the soil profiles. As a result, the annual cumulative loads of ARGs in leachates from the three soils with long-term manure fertilization were significantly increased compared to the controls and were in the order of acidic soil > neutral soil > calcareous soil. SourceTracker analyses revealed that manured soil was the predominant source of the ARGs in the soil leachate samples. Pseudomonas, Anaeromyxobacter, IMCC26256, and MND1 were identified as the dominant potential hosts responsible for the vertical migration and leaching of ARGs in the three soils. PiecewiseSEM analysis further showed that long-term manure fertilization affected the vertical migration of ARGs during rainfall mainly by altering soil properties (i.e., pH, soil organic carbon, and sand). Our results suggest that the ARGs in soils with long-term manure fertilization are a significant potential source of ARG pollution in groundwater, and the measures should be taken to mitigate the vertical migration and leaching of ARGs during rainfall.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China; School of Agriculture and Biotechnology, Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, PR China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China; College of Resources, Hunan Agricultural University, Changsha, 410128, PR China
| | - Chaolei Yuan
- School of Agriculture and Biotechnology, Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
2
|
Kang M, Le VV, Ko SR, Chun SJ, Choi DY, Shin Y, Kim K, Baek SH, Ahn CY. Effect of rainfall in shaping microbial community during Microcystis bloom in Nakdong River, Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172482. [PMID: 38621529 DOI: 10.1016/j.scitotenv.2024.172482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Various environmental factors play a role in the formation and collapse of Microcystis blooms. This study investigates the impact of heavy rainfall on cyanobacterial abundance, microbial community composition, and functional dynamics in the Nakdong River, South Korea, during typical and exceptionally rainy years. The results reveal distinct responses to rainfall variations, particularly in cyanobacterial dominance and physicochemical characteristics. In 2020, characterized by unprecedented rainfall from mid-July to August, Microcystis blooms were interrupted significantly, exhibiting lower cell densities and decreased water temperature, compared to normal bloom patterns in 2019. Moreover, microbial community composition varied, with increases in Gammaproteobacteria and notably in genera of Limnohabitans and Fluviicola. These alterations in environmental conditions and bacterial community were similar to those of the post-bloom period in late September 2019. It shows that heavy rainfall during summer leads to changes in environmental factors, consequently causing shifts in bacterial communities akin to those observed during the autumn-specific post-bloom period in typical years. These changes also accompany shifts in bacterial functions, primarily involved in the degradation of organic matter such as amino acids, fatty acids, and terpenoids, which are assumed to have been released due to the significant collapse of cyanobacteria. Our results demonstrate that heavy rainfall in early summer induces changes in the environmental factors and subsequently microbial communities and their functions, similar to those of the post-bloom period in autumn, leading to the earlier breakdown of Microcystis blooms.
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seong-Jun Chun
- LMO Research Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon 33657, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yuna Shin
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Yang Z, Zhang H, Lü F, Yang Y, Hu T, He P. A Novel High-Throughput Detection Method for Plastic Debris in Organic-Rich Matrices Based on Image Fusion. Anal Chem 2024; 96:6045-6054. [PMID: 38569073 DOI: 10.1021/acs.analchem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Plastic pollution pervades natural environments and wildlife. Consequently, high-throughput detection methods for plastic debris are urgently needed. A novel method was developed to detect plastic debris larger than 0.5 mm, which integrated an extraction method with low organic loss and plastic damage alongside a classification method for fused images. This extraction method broadened the size range of the remaining plastic debris, while the fusion solved the low spatial resolution of hyperspectral images and the absence of spectral information in red-green-blue (RGB) images. This method was validated for plastic debris in digestate, compost, and sludge, with extraction demonstrating 100% recovery rates for all samples. After fusion, the spatial resolution of hyperspectral images was improved about five times. Classification recall for the fused hyperspectral images achieved 97 ± 8%, surpassing 83 ± 29% of the raw images. Application of this method to solid digestate detected 1030 ± 212 items/kg of plastic debris, comparable with the conventional Fourier transform infrared spectroscopic result of 1100 ± 436 items/kg. This developed method can investigate plastic debris in complex matrices, simultaneously addressing a wide range of sizes and types. This capability helps acquire reliable data to predict secondary microplastic generation and conduct a risk assessment.
Collapse
Affiliation(s)
- Zhan Yang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yicheng Yang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Tian Hu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Singh AK, Bhardwaj K. Mechanistic understanding of green synthesized cerium nanoparticles for the photocatalytic degradation of dyes and antibiotics from aqueous media and antimicrobial efficacy: A review. ENVIRONMENTAL RESEARCH 2024; 246:118001. [PMID: 38145730 DOI: 10.1016/j.envres.2023.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
In recent years, extensive research endeavors are being undertaken for synthesis of an efficient, economic and eco-friendly cerium oxide nanoparticles (CeO2 NPs) using plant extract mediated greener approach. A number of medicinal plants and their specific parts (flowers, bark, seeds, fruits, seeds and leaves) have been found to be capable of synthesizing CeO2 NPs. The specific key phytochemical constituents of plants such as alkaloids, terpenoids, phenolic acids, flavones and tannins can play significant role as a reducing, stabilizing and capping agents in the synthesis of CeO2 NPs from their respective precursor solution of metal ions. The CeO2 NPs are frequently using in diverse fields of science and technology including photocatalytic degradation of dyes, antibiotics as well as antimicrobial applications. In this review, the mechanism behind the green synthesis CeO2 NPs using plant entities are summarized along with discussion of analytical results from characterization techniques. An overview of CeO2 NPs for water remediation application via photocatalytic degradation of dyes and antibiotics are discussed. In addition, the mechanisms of antimicrobial efficacy of CeO2 NPs and current challenges for their sustainable application at large scale in real environmental conditions are discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India.
| | - Kajal Bhardwaj
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
5
|
Liu S, Zhang X, Qu C, Luo X, Xing Y, Tan S, Jiang Y, Huang Q, Chen W. Ore improver additions alter livestock manure compost ecosystem C:N:P stoichiometry. ENVIRONMENTAL RESEARCH 2024; 244:117904. [PMID: 38092239 DOI: 10.1016/j.envres.2023.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Deciphering the pivotal components of nutrient metabolism in compost is of paramount importance. To this end, ecoenzymatic stoichiometry, enzyme vector modeling, and statistical analysis were employed to explore the impact of exogenous ore improver on nutrient changes throughout the livestock composting process. The total phosphorus increased from 12.86 to 18.72 g kg-1, accompanied by a marked neutralized pH with ore improver, resulting in the Carbon-, nitrogen-, and phosphorus-related enzyme activities decreases. However, the potential C:P and N:P acquisition activities represented by ln(βG + CB): ln(ALP) and ln(NAG): ln(ALP), were increased with ore improver addition. Based on the ecoenzymatic stoiometry theory, these changes reflect a decreasing trend in the relative P/N limitation, with pH and total phosphorus as the decisive factors. Our study showed that the practical employment of eco stoichiometry could benefit the manure composting process. Moreover, we should also consider the ecological effects from pH for the waste material utilization in sustainable agriculture.
Collapse
Affiliation(s)
- Song Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaoyu Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chang Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonghui Xing
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuxin Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
6
|
Wang J, Jiao M, Zhan X, Hu C, Zhang Z. Humification and fungal community succession during pig manure composting: Membrane covering and mature compost addition. BIORESOURCE TECHNOLOGY 2024; 393:130030. [PMID: 37977497 DOI: 10.1016/j.biortech.2023.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The objective of this study was to elucidate the combined effect of a semi-permeable membrane (M) and mature compost (MC) on humification and fungal community succession in pig manure composting. Compared with the control, the concentrations of humic substances (HSs) increased by 44.54 % (M + 15 % MC) and 43.90 % (M). During the thermophilic phase, Aspergillus (67.26 %) was the dominant genus in the M + 15 % MC treatment. Membrane covering increased the relative abundance (RA) of other phyla (except for Ascomycetes and Basidiomycetes) on the 14th day and Basidiomycetes on the 80th day in M treatment. Humic acid, HSs were positively correlated with the RA of genera Myceliophthora, Kernia, and Mycothermus. Myceliophthora was the key genus in the M + 15 % MC treatment on the 80th day. The results showed that 15 % MC addition under membrane covering optimizes the quality of composting products.
Collapse
Affiliation(s)
- Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Zhang H, Zhou X, Luo D. Calcined Bean Dregs-Hydrocalumite Composites as Efficient Adsorbents for the Removal of Ofloxacin. ACS OMEGA 2023; 8:49191-49200. [PMID: 38162733 PMCID: PMC10753558 DOI: 10.1021/acsomega.3c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Calcined bean dregs-hydrocalumite composites were prepared through in situ self-assembly of hydrocalumite on the surface of bean dregs and used for the adsorption of ofloxacin from water. The adsorbents were characterized by scanning electron microscopy, X-ray powder diffraction, and N2 physical adsorption. The results showed that the adsorption performance of calcined bean dregs-hydrocalumite composites for ofloxacin was much better than that of a single bean dreg carbon or calcined hydrocalumite. The effects of preparation and adsorption conditions on the adsorption property of calcined bean dregs-hydrocalumite for ofloxacin were also investigated. The adsorption ratio of ofloxacin reached up to 99.93% using 4 g·L-1 adsorbent dosage with 20 mg·L-1 initial concentration of ofloxacin at 30 °C in 2 h. The adsorption process mainly occurred in the first 5 min. In addition, the adsorption of ofloxacin by calcined bean dregs-hydrocalumite was more in line with pseudo-second-order dynamics and the Langmuir isotherm model.
Collapse
Affiliation(s)
- Haohui Zhang
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Xi Zhou
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Deyi Luo
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| |
Collapse
|
8
|
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, Wang Q. From waste to wealth: Innovations in organic solid waste composting. ENVIRONMENTAL RESEARCH 2023; 229:115977. [PMID: 37100364 DOI: 10.1016/j.envres.2023.115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
9
|
Wang Y, Wang J, Wu X, Zhao R, Zhang Z, Zhu J, Azeem M, Xiao R, Pan J, Zhang X, Li R. Synergetic effect and mechanism of elementary sulphur, MgSO 4 and KH 2PO 4 progressive reinforcement on pig manure composting nitrogen retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121934. [PMID: 37263560 DOI: 10.1016/j.envpol.2023.121934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The potential of sulphur (S), MgSO4 (Mg), and KH2PO4 (P) in nitrogen retention, ammonia emission decrease, and microbial community succession during composting needs to be investigated. To achieve this, different levels of S (0, 0.2, 0.4, 0.6, and 0.8% in dry weight) plus Mg and P (S + Mg + P) were progressively added in 70 days pig manure aerobic composting. The results revealed that the amendment increased salinity and lowered pH and dephytotoxication of the product with the increase of S amount. However, no significant inhibition effects were observed on the evolution of the thermophilic phase and product maturity. In addition, the amendment significantly reduced the total NH3 and N2O emissions by 29.66%-58.83% and 20.89%-56.53%, increased NH4+ level by 17.31%-73.27% in thermophilic phase and NO3- content by 37.12%-54.84% in a mature phase, and elevated the total Kjeldahl nitrogen content by 15.49%-37.35% during the composting. In addition, compared to the control, the supplement markedly encouraged the formation of guanite in the compost product. The S addition stimulated the growth of Anseongella, Actinomadura, Chelativorans, Castellaniella, Luteimonas, and Steroidobacter microbial communities which functioned well in the degradation of nitrogen-containing compounds and organic matter. Evidence from Redundancy Analysis, Firmicutes, Myxococcus, Chloroflexi, Gemmatimonadota, and Deinococcota showed positive correlations with pH. These results imply that adding S-Mg-P amendment encourages the population and activity of specific functional microorganisms, and facilitated the ammonia emission reduction by lowering pH and thus reserved nitrogen through the formation of guanite during composting. The investigation of bacterial community abundance and environmental variables at the phylum and genus levels over time revealed that adding of 0.6% S in conjunction with P and Mg minerals was suitable for nitrogen loss mitigation in composting. The findings suggest using S + Mg + P supplement to conserve nitrogen in pig dung aerobic composting.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Zhu
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Punjab 46300, Pakistan
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|