1
|
Cao L, Wu H, Wu X, Feng Y, Ye W, Fan J, Yang Q. Effects of cyanotoxins on nitrogen transformation in aquaculture systems with microplastics coexposure: Adsorption behavior, bacterial communities and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177079. [PMID: 39442720 DOI: 10.1016/j.scitotenv.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Microcystin-LR (MC-LR) and microplastics (MPs) have attracted increasing attention as important new pollutants in freshwater fishery environments. However, there are few reports on the effects of long-term combined MC-LR and MPs pollution on nitrogen transformation and microbial communities in aquaculture ponds, and the resulting risks have yet to be determined. Therefore, in this study, traditional refractory MPs (polystyrene, PS), biodegradable MPs (polylactic acid, PLA) and MC-LR, which are common in freshwater fishery environments in China, were selected as pollutants to construct a microcosm that simulates freshwater aquaculture ponds. MC-LR coexposure to PS and PLA was tested to reveal the effects of these pollutants on nitrogen transformation and microbial communities in aquaculture ponds, as well as to elucidate the potential risks posed by traditional refractory MPs and biodegradable MPs to freshwater aquaculture ecosystems. The results revealed that the MPs had a relatively high adsorption rate for MC-LR and that PS presented a relatively high adsorption capacity, whereas PLA presented a relatively high desorption capacity. Single or combined MPs and MC-LR pollution disrupted the normal nitrogen cycle in the aquaculture system, causing an overall loss of nitrogen in the water, and denitrification and nitrogen fixation in the water were inhibited to a certain extent through the inhibition of nitrogen cycle-related functional genes, with the PS + MC-LR group having the greatest inhibitory effect. In addition, compared with single-pollutant exposure, combined exposure to MC-LR and MPs had a greater effect on the microbial community composition. Analysis of the integrated biomarker response (IBR) index revealed that the risk of combined exposure to MC-LR and PS was greater than that of single exposure, so this phenomenon merits further attention.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Hao Wu
- Huzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Huzhou City, Zhejiang Province 313000, China
| | - Xiang Wu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China.
| | - Yaru Feng
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Wentao Ye
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Jiaqi Fan
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Quping Yang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| |
Collapse
|
2
|
Xiao Y, Hu L, Duan J, Che H, Wang W, Yuan Y, Xu J, Chen D, Zhao S. Polystyrene microplastics enhance microcystin-LR-induced cardiovascular toxicity and oxidative stress in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124022. [PMID: 38679130 DOI: 10.1016/j.envpol.2024.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The health risks associated with combined exposure to microplastics (MPs) and cyanobacteria toxins have gained increasing attention due to the large-scale prevalence of cyanobacterial blooms and accumulation of MPs in aquatic environments. Therefore, we explored the cardiovascular toxic effects of microcystin-LR (MC-LR, 1, 10, 100 μg/L) in the presence of 5 μm polystyrene microplastics (PS-MPs, 100 μg/L) and 80 nm polystyrene nanoplastics (PS-NPs, 100 μg/L) in zebrafish models. Embryos were exposed to certain PS-MPs and PS-NPs conditions in water between 3 h post-fertilization (hpf) and 168 hpf. Compared to MC-LR alone, a significant decrease in heart rate was observed as well as notable pericardial edema in the MC-LR + PS-MPs/NPs groups. At the same time, sinus venosus and bulbus arteriosus (SV-BA) distances were significantly increased. Furthermore, the addition of PS-MPs/NPs caused thrombosis in the caudal vein and more severe vascular damage in zebrafish larvae compared to MC-LR alone. Our findings revealed that combined exposure to PS-NPs and MC-LR could significantly decreased the expression of genes associated with cardiovascular development (myh6, nkx2.5, tnnt2a, and vegfaa), ATPase (atp1a3b, atp1b2b, atp2a1l, atp2b1a, and atp2b4), and the calcium channel (cacna1ab and ryr2a) compared to exposure to MC-LR alone. In addition, co-exposure with PS-MPs/NPs exacerbated the MC-LR-induced reactive oxygen species (ROS) production, as well as the ROS-stimulated apoptosis and heightened inflammation. We also discovered that astaxanthin (ASTA) treatment partially attenuated these cardiovascular toxic effects. Our findings confirm that exposure to MC-LR and PS-MPs/NPs affects cardiovascular development through calcium signaling interference and ROS-induced cardiovascular cell apoptosis. This study highlights the potential environmental risks of the co-existence of MC-LR and PS-MPs/NPs for fetal health, particularly cardiovascular development.
Collapse
Affiliation(s)
- Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxin Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuan Yuan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Daojun Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Gu P, Wang Y, Zhang K, Wu H, Zhang W, Ding Y, Yang K, Zhang Z, Ren X, Miao H, Zheng Z. Cyanobacterial blooms control with CaO 2 in different stages: Inhibition efficiency, water quality optimization and microbial community changes. CHEMOSPHERE 2024; 353:141655. [PMID: 38460851 DOI: 10.1016/j.chemosphere.2024.141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.
Collapse
Affiliation(s)
- Peng Gu
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Yuting Wang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Kenian Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Wanqing Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Yi Ding
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Kunlun Yang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Zengshuai Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Xueli Ren
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Hengfeng Miao
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Wang Z, Hao Y, Shen J, Li B, Chuan H, Xie P, Liu Y. Visualization of microcystin-LR and sulfides in plateau lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132771. [PMID: 37839378 DOI: 10.1016/j.jhazmat.2023.132771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
In eutrophic water bodies, sulfides are closely related to the growth of cyanobacteria and the production of microcystin-LR (MC-LR). To date, the underlying interaction mechanism between a sulfides and MC-LR remains controversial. Thus, visually presenting the distribution characteristics of sulfides and MC-LR in contaminated water is crucial. Here, we propose a novel and expeditious practical approach, utilizing fluorescence probe technology, to assess the distribution characteristics of MC-LR and sulfur in natural lakes. We have developed novel probes, pib2, to detect HSO3- and HS-, and pib18, to simultaneously identify MC-LR and sulfides. Through correlation analysis of fluorescence data and physicochemical indicators at sampling points, it is found that fluorescence data has good correlation with sulfides and MC-LR, and speculated that pib2 and pib18 may be able to detect sulfides and MC-LR in lakes. Using this method, we rapidly obtained the distribution of MC-LR and sulfur in Qilu and Erhai Lakes. Notably, for the first time, we rapidly displayed the distributions of sulfides and MC-LR across lakes by the fluorescent probe technology.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Yu Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Jianping Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Lawrence J, Santolini C, Binda G, Carnati S, Boldrocchi G, Pozzi A, Bettinetti R. Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. TOXICS 2023; 11:1017. [PMID: 38133418 PMCID: PMC10748375 DOI: 10.3390/toxics11121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Lakes are essentially interlinked to humans as they provide water for drinking, agriculture, industrial and domestic purposes. The upsurge of plastic usage, its persistence, and potential detrimental effects on organisms cause impacts on the trophic food web of freshwater ecosystems; this issue, however, still needs to be explored. Zooplankton worldwide is commonly studied as an indicator of environmental risk in aquatic ecosystems for several pollutants. The aim of the review is to link the existing knowledge of microplastic pollution in zooplankton to assess the potential risks linked to these organisms which are at the first level of the lacustrine trophic web. A database search was conducted through the main databases to gather the relevant literature over the course of time. The sensitivity of zooplankton organisms is evident from laboratory studies, whereas several knowledge gaps exist in the understanding of mechanisms causing toxicity. This review also highlights insufficient data on field studies hampering the understanding of the pollution extent in lakes, as well as unclear trends on ecosystem-level cascading effects of microplastics (MPs) and mechanisms of toxicity (especially in combination with other pollutants). Therefore, this review provides insight into understanding the overlooked issues of microplastic in lake ecosystems to gain an accurate ecological risk assessment.
Collapse
Affiliation(s)
- Jassica Lawrence
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Carlotta Santolini
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Gilberto Binda
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stefano Carnati
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Ginevra Boldrocchi
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| | - Andrea Pozzi
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Roberta Bettinetti
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| |
Collapse
|
7
|
Liu H, Jin H, Pan C, Chen Y, Li D, Ding J, Han X. Co-exposure to polystyrene microplastics and microcystin-LR aggravated male reproductive toxicity in mice. Food Chem Toxicol 2023; 181:114104. [PMID: 37848122 DOI: 10.1016/j.fct.2023.114104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Microplastics (MPs) are plastic pollutants with a diameter of less than 5 mm and microcystins (MCs) are natural toxins produced by cyanobacteria. In recent years, the pollution of MPs and MCs attracted widespread attention. However, our understanding about the toxic effects of co-exposure of MPs and MCs on male reproduction is limited. Mice were continuously exposed to 0.04mg/(kg*bw) microcystin-leucine-arginine (MC-LR) or 45 mg/(kg*bw) polystyrene microplastics (PS-MPs) or a mixed solution of 0.04mg/(kg*bw) MC-LR and 45 mg/(kg*bw) PS-MPs by gavage for 28 days in this study. The results showed that PS-MPs could absorb MC-LR in ddH2O and MC-LR content in testis was increased in the group with combined exposure when compared to the group only exposed to MC-LR. Exposure to PS-MPs or MC-LR individually could destroy testis structure, increase the level of tissue apoptosis and decrease the quality of sperm, while the co-exposure enhanced the toxic effects. Furthermore, PS-MPs could carry MC-LR into testis Leydig cells, reduce testosterone levels and mRNA expression levels of key molecules involved in testosterone synthesis (StAR, P450scc, P450c17,3β-HSD and 17β-HSD). Among them, the combined effect of PS-MPs-MC-LR was the most severe. In summary, this study provides new insights into the toxicity of MPs and MCs in mammals.
Collapse
Affiliation(s)
- Hongru Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Gao X, Feng W, Zhang J, Zhang H, Huo S. Synthesis of Cu 2+ doped biochar and its inactivation performance of Microcystis aeruginosa: Significance of synergetic effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122186. [PMID: 37442327 DOI: 10.1016/j.envpol.2023.122186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The harmful cyanobacteria bloom is frequently occurring in the aquatic environment and poses a tremendous threat to both aquatic organisms and ecological function. In this study, a series of Cu2+ doped biochar (BC) composites (Cu-BCs) with different loading ratios (0.1 %-5 wt %) (Cu-BC-0.1/0.5/1/2.5/5) was successfully fabricated through a one-step adsorption method for in-situ inactivation of Microcystis aeruginosa and simultaneous removal of microcystin-LR (MC-LR). Compared with the single BC/CuSO4 and other Cu-BCs composites, the Cu-BC-2.5 exhibited the best algae inactivation performance with the lowest 72 h medium effective concentration (EC50) value of 0.34 mg/L and highest chlorophyll α degradation efficiency of 8.31 g/g. Notably, the as-prepared Cu-BC-2.5 maintained good inactivation performance in the near-neutral pH (6.5-8.5), and the presence of humic acid and salts such as Na2CO3 and NaCl. The outstanding inhibitory effect of the Cu-BC-2.5 could be explained by the synergetic effect between biochar and Cu2+, which greatly elevated reactive oxygen species (ROS) intensity and in turn led to severe membrane damage and collapse of the antioxidant system. Additionally, the Cu-BC-2.5 could simultaneously remove the released microcystin-LR (MC-LR) throughout the inactivation process and prevent secondary pollution, thus offering a new insight into the alleviation of harmful cyanobacteria in aquatic environment.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China; State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| |
Collapse
|
9
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|