1
|
Mejía C D, Faican G, Zalakeviciute R, Matovelle C, Bonilla S, Sobrino JA. Spatio-temporal evaluation of air pollution using ground-based and satellite data during COVID-19 in Ecuador. Heliyon 2024; 10:e28152. [PMID: 38560184 PMCID: PMC10979269 DOI: 10.1016/j.heliyon.2024.e28152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The concentration of gases in the atmosphere is a topic of growing concern due to its effects on health, ecosystems etc. Its monitoring is commonly carried out through ground stations which offer high precision and temporal resolution. However, in countries with few stations, such as Ecuador, these data fail to adequately describe the spatial variability of pollutant concentrations. Remote sensing data have great potential to solve this complication. This study evaluates the spatiotemporal distribution of nitrogen dioxide (NO2) and ozone (O3) concentrations in Quito and Cuenca, using data obtained from ground-based and Sentinel-5 Precursor mission sources during the years 2019 and 2020. Moreover, a Linear Regression Model (LRM) was employed to analyze the correlation between ground-based and satellite datasets, revealing positive associations for O3 (R2 = 0.83, RMSE = 0.18) and NO2 (R2 = 0.83, RMSE = 0.25) in Quito; and O3 (R2 = 0.74, RMSE = 0.23) and NO2, (R2 = 0.73, RMSE = 0.23) for Cuenca. The agreement between ground-based and satellite datasets was analyzed by employing the intra-class correlation coefficient (ICC), reflecting good agreement between them (ICC ≥0.57); and using Bland and Altman coefficients, which showed low bias and that more than 95% of the differences are within the limits of agreement. Furthermore, the study investigated the impact of COVID-19 pandemic-related restrictions, such as social distancing and isolation, on atmospheric conditions. This was categorized into three periods for 2019 and 2020: before (from January 1st to March 15th), during (from March 16th to May 17th), and after (from March 18th to December 31st). A 51% decrease in NO2 concentrations was recorded for Cuenca, while Quito experienced a 14.7% decrease. The tropospheric column decreased by 27.3% in Cuenca and 15.1% in Quito. O3 showed an increasing trend, with tropospheric concentrations rising by 0.42% and 0.11% for Cuenca and Quito respectively, while the concentration in Cuenca decreased by 14.4%. Quito experienced an increase of 10.5%. Finally, the reduction of chemical species in the atmosphere as a consequence of mobility restrictions is highlighted. This study compared satellite and ground station data for NO2 and O3 concentrations. Despite differing units preventing data validation, it verified the Sentinel-5P satellite's effectiveness in anomaly detection. Our research's value lies in its applicability to developing countries, which may lack extensive monitoring networks, demonstrating the potential use of satellite technology in urban planning.
Collapse
Affiliation(s)
- Danilo Mejía C
- Grupo CATOx – CEA de la Universidad de Cuenca, Campus Balzay, 010207 Cuenca, Ecuador
- Carrera de Ingeniería Ambiental de la Universidad de Cuenca, Campus Balzay, 010207 Cuenca, Ecuador
| | - Gina Faican
- Grupo CATOx – CEA de la Universidad de Cuenca, Campus Balzay, 010207 Cuenca, Ecuador
| | - Rasa Zalakeviciute
- Grupo de Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de Las Americas, Quito - EC 170125, Ecuador
| | - Carlos Matovelle
- Carrera de Ingeniería Ambienta de la Universidad Católica de Cuenca, Ecuador
| | - Santiago Bonilla
- Research Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica, Machala y Sabanilla, 170301 Quito, Ecuador
| | - José A. Sobrino
- Gobal Change Unit (GCU), Image Processing Laboratory (IPL), University of Valencia, Spain
| |
Collapse
|
2
|
Cui Z, Pan R, Liu J, Yi W, Huang Y, Li M, Zhang Z, Kuang L, Liu L, Wei N, Song R, Yuan J, Li X, Yi X, Song J, Su H. Green space and its types can attenuate the associations of PM 2.5 and its components with prediabetes and diabetes-- a multicenter cross-sectional study from eastern China. ENVIRONMENTAL RESEARCH 2024; 245:117997. [PMID: 38157960 DOI: 10.1016/j.envres.2023.117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The effect of fine particulate matter (PM2.5) components on prediabetes and diabetes is of concern, but the evidence is limited and the specific role of different green space types remains unclear. This study aims to investigate the relationship of PM2.5 and its components with prediabetes and diabetes as well as the potential health benefits of different types and combinations of green spaces. METHODS A multicenter cross-sectional study was conducted in eastern China by using a multi-stage random sampling method. Health screening and questionnaires for 98,091 participants were performed during 2017-2020. PM2.5 and its five components were estimated by the inverse distance weighted method, and green space was reflected by the Normalized Difference Vegetation Index (NDVI), percentages of tree or grass cover. Multivariate logistic regression and quantile g-computing were used to explore the associations of PM2.5 and five components with prediabetes and diabetes and to elucidate the potential moderating role of green space and corresponding type combinations in these associations. RESULTS Each interquartile range (IQR) increment of PM2.5 was associated with both prediabetes (odds ratio [OR]: 1.15, 95%CI [confidence interval]: 1.10-1.20) and diabetes (OR: 1.18, 95% CI: 1.11-1.25), respectively. All five components of PM2.5 were related to prediabetes and diabetes. The ORs of PM2.5 on diabetes were 1.49 (1.35-1.63) in the low tree group and 0.90 (0.82-0.98) in the high tree group, respectively. In the high tree-high grass group, the harmful impacts of PM2.5 and five components were significantly lower than in the other groups. CONCLUSION Our study suggested that PM2.5 and its components were associated with the increased risk of prediabetes and diabetes, which could be diminished by green space. Furthermore, the coexistence of high levels of tree and grass cover provided greater benefits. These findings had critical implications for diabetes prevention and green space-based planning for healthy city.
Collapse
Affiliation(s)
- Zhiqian Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Yuxin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Ming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Zichen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Lingmei Kuang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Xingxu Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China.
| |
Collapse
|
3
|
Sui Y, Ettema D, Helbich M. Changes in neighborhood physical and social environments matter for change in mental health: Longitudinal evidence from Dutch panel data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122540. [PMID: 37709125 DOI: 10.1016/j.envpol.2023.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Numerous neighborhood environments have been recognized to affect mental health, but only a few longitudinal studies investigated these associations jointly and whether different population groups are affected differently. We used three-wave panel data of 2699 adults between 2010 and 2016 in the Netherlands to assess the associations between changes in neighborhood physical and social environments and mental health changes. Further, we assessed possible effect modification of gender and income. Mental health was measured using the Mental Health Inventory. Time-varying exposure to green space, blue space, population density, air pollution, socioeconomic deprivation, and social fragmentation were assigned based on individuals' neighborhood histories. Fixed-effect regressions were conducted to assess within-person associations between single and multiple exposures on mental health for the entire sample and stratified by gender and income. Our single-exposure models showed that increases in blue space were significantly associated with mental health improvements, while increases in fine particulate matter (PM2.5) resulted in declines in mental health. These associations were not attenuated in the multi-exposure model. We observed no significant associations for the remaining environments. Stratification analyses showed that females' mental health further declined as PM2.5 concentrations increased compared to males. Increasing levels of socioeconomic deprivation were associated with further declines in mental health among the less well-off compared with higher-income earners. Our longitudinal findings suggested that neighborhood physical and social environment changes were associated with mental health changes. Future research is required to establish the underlying pathways.
Collapse
Affiliation(s)
- Yuwen Sui
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, 3584 CB, the Netherlands.
| | - Dick Ettema
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Marco Helbich
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
| |
Collapse
|