1
|
Song HH, Choi H, Kim S, Kim HG, An S, Kim S, Jang H. Nitrogen-doped carbon quantum dot regulates cell proliferation and differentiation by endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2024; 28:481-494. [PMID: 39364144 PMCID: PMC11448352 DOI: 10.1080/19768354.2024.2409452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 10/05/2024] Open
Abstract
Quantum dots have diverse biomedical applications, from constructing biological infrastructures like medical imaging to advancing pharmaceutical research. However, concerns about human health arise due to the toxic potential of quantum dots based on heavy metals. Therefore, research on quantum dots has predominantly focused on oxidative stress, cell death, and other broader bodily toxicities. This study investigated the toxicity and cellular responses of mouse embryonic stem cells (mESCs) and mouse adult stem cells (mASCs) to nitrogen-doped carbon quantum dots (NCQDs) made of non-metallic materials. Cells were exposed to NCQDs, and we utilized a fluorescent ubiquitination-based cell system to verify whether NCQDs induce cytotoxicity. Furthermore, we validated the differentiation-inducing impact of NCQDs by utilizing embryonic stem cells equipped with the Oct4 enhancer-GFP reporter system. By analyzing gene expression including Crebzf, Chop, and ATF6, we also observed that NCQDs robustly elicited endoplasmic reticulum (ER) stress. We confirmed that NCQDs induced cytotoxicity and abnormal differentiation. Interestingly, we also confirmed that low concentrations of NCQDs stimulated cell proliferation in both mESCs and mASCs. In conclusion, NCQDs modulate cell death, proliferation, and differentiation in a concentration-dependent manner. Indiscriminate biological applications of NCQDs have the potential to cause cancer development by affecting normal cell division or to fail to induce normal differentiation by affecting embryonic development during pregnancy. Therefore, we propose that future biomedical applications of NCQDs necessitate comprehensive and diverse biological studies.
Collapse
Affiliation(s)
- Hyun Hee Song
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seonghan Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hwan Gyu Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangmin An
- Department of Physics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sejung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
- Quantabiom Co., Ltd., Jeonju, Republic of Korea
| |
Collapse
|
2
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
3
|
Zhang J, Guo J, Yang N, Huang Y, Wen J, Xiang Q, Liu Q, Chen Y, Hu T, Rao C. Zanthoxylum armatum DC fruit ethyl acetate extract site induced hepatotoxicity by activating endoplasmic reticulum stress and inhibiting autophagy in BRL-3A models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117245. [PMID: 37802376 DOI: 10.1016/j.jep.2023.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC (Z. armatum) is renowned not only as a culinary spice but also as a staple in traditional ethnic medicine, predominantly in Southeast Asia and various other regions. Recent research has unveiled its multifaceted pharmacological properties, including anti-inflammatory, antibacterial, and toothache relief effects. Nonetheless, some studies have reported the potential toxicity of Z. armatum, emphasizing the need to further explore its toxicity mechanisms for safer application. AIM OF THE STUDY This study investigated the effect and mechanism of hepatotoxicity in BRL-3A cells induced by Z. armatum. MATERIALS AND METHODS The compounds of the ethyl acetate extract of Z. armatum (ZADC-EA) were identified by ultrahigh performance liquid chromatography coupled with quadrupole-orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). The hepatotoxicity of the extract was evaluated by detecting cell viability, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity, and apoptosis. Endoplasmic reticulum stress, autophagy, and apoptosis were detected by Ad-mCherry-GFP-LC3B, flow cytometry, and Western blot to explore the mechanism of hepatotoxicity induced by ZADC-EA. RESULTS UPLC-Q-Orbitrap HRMS analysis revealed the presence of compounds belonging to flavonoids, terpenoids, and alkaloids. The IC50 value of ZADC-EA was 62.43 μg/mL, the cell viability of BRL-3A decreased in a time-dose dependent manner, and the levels of AST, ALT, and LDH were upregulated. In addition, ZADC-EA-induced increased expression of eIF2α-ATF4-CHOP pathway proteins, inhibited autophagy, and promoted apoptosis. CONCLUSIONS This study provides insights into the hepatotoxicity mechanisms of ZADC-EA on BRL-3A cells. It was found that ZADC-EA could induce endoplasmic reticulum stress and inhibit autophagy, then intensify apoptosis, and endoplasmic reticulum stress could exacerbate autophagy inhibition.
Collapse
Affiliation(s)
- Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
4
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
5
|
Girigoswami K, Pallavi P, Girigoswami A. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Deliv 2023; 30:2284684. [PMID: 37990530 PMCID: PMC10987057 DOI: 10.1080/10717544.2023.2284684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
It is evident that site-specific systemic drug delivery can reduce side effects, systemic toxicity, and minimal dosage requirements predominantly by delivering drugs to particular pathological sites, cells, and even subcellular structures. The endoplasmic reticulum (ER) and associated cell organelles play a vital role in several essential cellular functions and activities, such as the synthesis of lipids, steroids, membrane-associated proteins along with intracellular transport, signaling of Ca2+, and specific response to stress. Therefore, the dysfunction of ER is correlated with numerous diseases where cancer, neurodegenerative disorders, diabetes mellitus, hepatic disorder, etc., are very common. To achieve satisfactory therapeutic results in certain diseases, it is essential to engineer delivery systems that can effectively enter the cells and target ER. Nanoparticles are highly biocompatible, contain a variety of cargos or payloads, and can be modified in a pliable manner to achieve therapeutic effectiveness at the subcellular level when delivered to specific organelles. Passive targeting drug delivery vehicles, or active targeting drug delivery systems, reduce the nonselective accumulation of drugs while reducing side effects by modifying them with small molecular compounds, antibodies, polypeptides, or isolated bio-membranes. The targeting of ER and closely associated organelles in cells using nanoparticles, however, is still unsymmetrically understood. Therefore, here we summarized the pathophysiological prospect of ER stress, involvement of ER and mitochondrial response, disease related to ER dysfunctions, essential therapeutics, and nanoenabled modulation of their delivery to optimize therapy.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| |
Collapse
|
6
|
Ma N, Lu Y, Wang J, Liang X, Dong S, Zhao L. Role of CdTe quantum dots on peripheral Immunocytes and selenoprotein P: immunotoxicity at the molecular and cellular levels. Toxicol Res (Camb) 2023; 12:1041-1050. [PMID: 38145088 PMCID: PMC10734625 DOI: 10.1093/toxres/tfad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
The extensive product and application of cadmium-quantum dots (Cd-QDs), one kind of semiconductor nanomaterials, lead to prolonged exposure to the environment. Cd-QDs have shown good properties in biomedical and imaging-related fields; the safety of Cd-QDs limits the application of these materials and technologies, however. The systematic distribution of CdTe QDs in organisms has been ascertained in previous studies. Nevertheless, it is relatively less reported about the toxicity of CdTe QDs to immune macromolecules and organs. Based on this, immunocytes (including lymphocyte subsets-CD4+ T and CD8+ T cells, splenocytes) and selenoprotein P (SelP) were chosen as targets for CdTe QDs immunotoxicity studies. Results indicate that CdTe QDs induced cytotoxicity to CD4+ T cells, CD8+ T cells and splenocytes by reducing cell viability and causing apoptosis as CdTe QDs and Cd2+ enter cells. At the molecular level, the direct interaction between CdTe QDs and SelP is proved by multispectral measurements, which demonstrated the alteration of protein structure. The combined results show that CdTe QDs induced adverse effects on the immune system at the cellular and molecular levels. This research contributes to a better understanding of CdTe QDs cause harmful damage to the immune system and provides new strategies for the inhibition and treatment of health damages caused by CdTe QDs.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, Shandong 264005, P.R. China
| | - Xueyou Liang
- Biochemical Department, Baoding University, 180# Wusi East Road, Baoding, Hebei 071000, P.R. China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
7
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Cheng Q, Duan Y, Fan W, Li D, Zhu C, Ma T, Liu J, Yu M. Cellular uptake, intracellular behavior, and acute/sub-acute cytotoxicity of a PEG-modified quantum dot with promising in-vivo biomedical applications. Heliyon 2023; 9:e20028. [PMID: 37809902 PMCID: PMC10559774 DOI: 10.1016/j.heliyon.2023.e20028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Quantum Dots (QDs) modified with branched Polyethylene Glycol-amine (6- or 8-arm PEG-amine) coupled with methoxy PEG (mPEG) hold great promise for in vivo biomedical applications due to a long half-life in blood and negligible toxicity. However, the potential risks regarding their concomitant prolonged co-incubation with cardiovascular and blood cells remains inconclusive. In the present study, the feasible, effective and convenient proliferating-restricted cell line models representing the circulatory system were established to investigate the cellular internalization followed by intracellular outcomes and resulting acute/sub-acute cytotoxicity of the 6-arm PEG-amine/mPEG QDs. We found a dose-, time- and cell type-dependent cellular uptake of the 6-arm PEG-amine/mPEG QDs, which was ten-fold lower compared to the traditional linear PEG-modified counterpart. The QDs entered cells via multiple endocytic pathways and were mostly preserved in Golgi apparatus for at least one week instead of degradation in lysosomes, resulting in a minimal acute cytotoxicity, which is much lower than other types of PEG-modified QDs previously reported. However, a sub-acute cytotoxicity of QDs were observed several days post exposure using the concentrations eliciting no-significant acute cytotoxic effects, which was associated with elevated ROS generation caused by QDs remained inside cells. Finally, a non-cytotoxic concentration of the QDs was identified at the sub-acute cytotoxic level. Our study provided important information for clinical translation of branched PEG-amine/mPEG QDs by elucidating the QDs-cell interactions and toxicity mechanism using the proliferation-restricted cell models representing circulatory system. What's more, we emphasized the indispensability of sub-acute cytotoxic effects in the whole biosafety evaluation process of nanomaterials like QDs.
Collapse
Affiliation(s)
- Qingyuan Cheng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiping Duan
- Department of Laboratory Medicine, the Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxu Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cuiwen Zhu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tiantian Ma
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingxia Yu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|