1
|
Li Y, Zhang M, Wang X, Ai S, Meng X, Liu Z, Yang F, Cheng K. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135140. [PMID: 39002486 DOI: 10.1016/j.jhazmat.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Meiling Zhang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
2
|
Chen S, Zhou Q, Feng Y, Dong Y, Zhang Z, Wang Y, Liu W. Responsive mechanism of Hemerocallis citrina Baroni to complex saline-alkali stress revealed by photosynthetic characteristics and antioxidant regulation. PLANT CELL REPORTS 2024; 43:176. [PMID: 38896259 DOI: 10.1007/s00299-024-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Saline-alkali stress induces oxidative damage and photosynthesis inhibition in H. citrina, with a significant downregulation of the expression of photosynthesis- and antioxidant-related genes at high concentration. Soil salinization is a severe abiotic stress that impacts the growth and development of plants. In this study, Hemerocallis citrina Baroni was used to investigate its responsive mechanism to complex saline-alkali stress (NaCl:Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) for the first time. The growth phenotype, photoprotective mechanism, and antioxidant system of H. citrina were studied combining physiological and transcriptomic techniques. KEGG enrichment and GO analyses revealed significant enrichments of genes related to photosynthesis, chlorophyll degradation and antioxidant enzyme activities, respectively. Moreover, weighted gene co-expression network analysis (WGCNA) found that saline-alkali stress remarkably affected the photosynthetic characteristics and antioxidant system. A total of 29 key genes related to photosynthesis and 29 key genes related to antioxidant enzymes were discovered. High-concentration (250 mmol L-1) stress notably inhibited the expression levels of genes related to light-harvesting complex proteins, photosystem reaction center activity, electron transfer, chlorophyll synthesis, and Calvin cycle in H. citrina leaves. However, most of them were insignificantly changed under low-concentration (100 mmol L-1) stress. In addition, H. citrina leaves under saline-alkali stress exhibited yellow-brown necrotic spots, increased cell membrane permeability and accumulation of reactive oxygen species (ROS) as well as osmolytes. Under 100 mmol L-1 stress, ROS was eliminate by enhancing the activities of antioxidant enzymes. Nevertheless, 250 mmol L-1 stress down-regulated the expression levels of genes encoding antioxidant enzymes, and key enzymes in ascorbate-glutathione (AsA-GSH) cycle as well as thioredoxin-peroxiredoxin (Trx-Prx) pathway, thus inhibiting the activities of these enzymes. In conclusion, 250 mmol L-1 saline-alkali stress caused severe damage to H. citrina mainly by inhibiting photosynthesis and ROS scavenging capacity.
Collapse
Affiliation(s)
- Shuo Chen
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuxue Zhou
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yanjun Dong
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zixuan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Wang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Li S, Li C, Yao D, Wang X, Gao Y. Bowl effect of irreversible primary salinization driven by geology in Hetao irrigation area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170834. [PMID: 38342452 DOI: 10.1016/j.scitotenv.2024.170834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Agricultural irrigation areas around the world employ similar planting methods, but there are notable disparities in salinization mechanism and management strategies. Many scholars have focused on human activities as the main cause of secondary soil salinization, while neglecting the underlying issue of primary soil salinization caused by geological factors. This study takes the Hetao irrigation area in China as a case study, delving into the geological forces responsible for primary salinization. Using historical survey data on geological structure, lake evolution, and sedimentation to analyze the stratigraphic distribution and groundwater storage characteristic. Additionally, using groundwater hydrochemistry data from historical literatures to analyze the concentration, distribution patterns, and source issues of salt ions. The research results show that a novel concept called the "bowl effect" can explain the unique cause of primary salinization in Hetao irrigation area. The bowl effect effectively transforms Hetao irrigation area into an enclosed space, which significantly limits the movement of groundwater and hinders the dilution of highly saline or alkaline water. The bowl effect has broad applicability and can serve as a useful framework for studying primary salinization challenges in agricultural irrigation areas worldwide. This research provides a scientifically reference for selecting salinization control methods, and will benefit local stakeholders, government agencies, and water resource managers.
Collapse
Affiliation(s)
- Shuanhu Li
- Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Chi Li
- Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot, China; School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot, China.
| | - De Yao
- Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot, China; School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Xiaorong Wang
- Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Yu Gao
- Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
4
|
Kou B, Yu T, Tang J, Zhu X, Yuan Y, Tan W. Kitchen compost-derived humic acid application promotes ryegrass growth and enhances the accumulation of Cd: An analysis of the soil microenvironment and rhizosphere functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170879. [PMID: 38354798 DOI: 10.1016/j.scitotenv.2024.170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|