1
|
Wang Z, Wang X, Li Z, Wang M, Fan W, Zha C, Zhou L, Zhang X, Chen Z, Luo F. Insight into the fate of tolfenpyrad in tea plant (Camellia sinensis L.) from root uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175088. [PMID: 39074749 DOI: 10.1016/j.scitotenv.2024.175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Residual pesticides in agricultural environments, including soil and irrigation water, can be taken up by plants, and thus pose a potential risk to food safety. Although tolfenpyrad has been widely used in tea plantations, limited information is available on its root uptake and fate in tea plants (Camellia sinensis L.). Exploring the mechanisms involved is crucial for understanding the migration and accumulation of tolfenpyrad in tea plants, particularly in the edible parts. In this study, root uptake of tolfenpyrad and its subsequent translocation, distribution, and metabolism in tea seedlings were investigated. The results indicated that the passive transport and apoplastic pathway dominated the root uptake of tolfenpyrad. After uptake, tolfenpyrad distributed predominantly in the cell walls (90.8-92.0 %) of roots, resulting in limited upward translocation in water-soluble fractions through transpirational pull, with translocation factor values far <1 (TFstem/root = 0.115-0.453 and TFleaf/stem = 0.039-0.184). Similar accumulation patterns were observed for the carboxylated metabolite PT-CA as well as hydroxylated metabolite PT-OH. Interestingly, the subcellular distribution of PT-CA in stems was much different from that of the parent tolfenpyrad: PT-CA mainly distributed in the stem cell walls (41.72 %) and cell organelles (56.18 %) at 3 h, then gradually transferred into the cell-soluble fractions (33.07 %) after 120 h. Results from the present study indicated limited upward translocation of tolfenpyrad with its main metabolites to leaves. This finding helps to alleviate concerns about environmental residual tolfenpyrad in tea consumption and provides valuable information for the safety evaluation of tolfenpyrad.
Collapse
Affiliation(s)
- Zihan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| | - Ziqiang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Min Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wenwen Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Chengmin Zha
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
2
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Han Q, Xing Y, Yan L, Cao L, Li Z, Jiang J, Xu X, Chen C. Biodegradation of Cyromazine by Mycobacterium sp. M15: Performance, Degradation Pathways, and Key Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18840-18850. [PMID: 39140307 DOI: 10.1021/acs.jafc.4c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cyromazine, a triazine insecticide, raises food safety concerns due to residues in vegetables like cowpeas. Microbial metabolism is key for pesticide elimination, but bacteria efficient in cyromazine degradation are limited, with uncharacterized enzymes. This study isolated a highly efficient cyromazine-degrading bacterium, Mycobacterium sp. M15, from a cowpea field. M15 utilized cyromazine as the sole carbon source for its growth and completely degraded 0.5 mM cyromazine within 24 h. The degradation pathway involved hydrolyzing cyromazine to N-cyclopropylammeline and further to N-cyclopropylammelide, with amino groups removed sequentially. The cyclopropylamine group in N-cyclopropionamide continued to hydrolyze to cyanuric acid. A protein, CriA, identified as an aminohydrolase in M15, degraded cyromazine to N-cyclopropylammeline. Using CriA reduced cyromazine residues on cowpea surfaces and completely degraded them in immersion solutions. These findings offer insights into cyromazine's microbial degradation mechanism and highlight the potential of cyromazine-degrading enzymes in enhancing food safety.
Collapse
Affiliation(s)
- Qi Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Youwen Xing
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Liu L, Cheng Z, Wang P, Chen X, Chen Z, Li J, Lu Y, Sun H. Insights into the Enantiomeric Uptake, Translocation, and Distribution of Triazole Chiral Pesticide Mefentrifluconazole in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18401-18411. [PMID: 39092675 DOI: 10.1021/acs.jafc.4c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The uptake, translocation, and accumulation of mefentrifluconazole (MFZ), an innovative chiral triazole fungicide, in plants at the enantiomeric level are still unclear. Herein, we investigated the patterns and mechanisms of enantiomeric uptake, bioaccumulation, and translocation through several experiments. Rac-MFZ shows the strongest uptake and bioaccumulation capacity in wheat compared with its enantiomers, while S-(+)-MFZ has the highest translocation potential. Molecular docking provided evidence of the stronger translocation ability of S-(+)-MFZ than R-(-)-MFZ. Split-root experiments showed that MFZ and its enantiomers could undergo long-distance transport within the wheat. Active transport or facilitated and simple diffusion may be involved in the wheat uptake of MFZ. The limited acropetal translocation capability of MFZ may be attributed to the dominant uptake pathway of apoplastic. The concentrations of Rac-MFZ in different subcellular fractions varied greatly. In summary, this study provides novel insights for further understanding the behaviors of MFZ and its enantiomers in plants.
Collapse
Affiliation(s)
| | | | | | | | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | | | | |
Collapse
|
5
|
Cui K, Ma G, Zhao S, Guan S, Liang J, Fang L, Ding R, Li T, Hao Q, Dong Z, Wang J. Dissipation, accumulation, distribution and risk assessment of fungicides in greenhouse and open-field cowpeas. Food Chem X 2024; 21:101172. [PMID: 38379796 PMCID: PMC10877180 DOI: 10.1016/j.fochx.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Pesticide residues in cowpeas have raised worldwide concern. However, only a few studies have focused on pesticide accumulation and distribution in greenhouse and open-field cowpeas. Field trial results suggest that difenoconazole, dimethomorph, thifluzamide and pyraclostrobin dissipated faster in open fields (mean half-lives, 1.72-1.99 days) than in greenhouses (2.09-3.55 days); moreover, fungicide residues in greenhouse cowpeas were 0.84-8.19 times higher than those in the open-field cowpeas. All fungicides accumulated in the greenhouse and open-field cowpeas after repeated spraying. Fungicide residues in old cowpeas were higher than those in tender cowpeas, and residues in the upper halves of cowpea pods were higher than those in the lower halves. In addition, cowpeas distributed in the lower halves of the plants had higher fungicide residues. Our findings suggest that greenhouse cultivation contributed to the pesticide residues in cowpeas after repeated spraying, although the levels of dietary health risks remained acceptable under both cultivation scenarios.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
| | - Shengying Zhao
- Shandong Shibang Agricultural Technology Co., Ltd., Jinan, Shandong 250100, People’s Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Qian Hao
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, People’s Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
6
|
Chen S, Ye Y, Liao F, Wu S, Zhang K. Insight into the uptake, translocation, metabolism, dissipation and risk assessment of tolfenpyrad in romaine and edible amaranth grown in hydroponic conditions. Food Chem 2024; 437:137896. [PMID: 37922805 DOI: 10.1016/j.foodchem.2023.137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Tolfenpyrad is an alternative to highly water-soluble and ecotoxic insecticides that is widely used in China. It is absorbed and accumulates in vegetables, leading to potential public-health hazards. A systematic study of the fate of tolfenpyrad is necessary for proper application and food safety. Herein, we report on the uptake, translocation, metabolism, dissipation, and dietary risks of tolfenpyrad in hydroponic romaine and amaranth plants. Roots easily absorbed and accumulated tolfenpyrad, although transport was moderate in both vegetables. Basipetal translocation of tolfenpyrad occurred in romaine but not in edible amaranth, owing to differences in specific transport behaviour in each case. Six metabolites and three pathways were proposed. Tolfenpyrad affected antioxidant enzyme activities in different parts of the two vegetables. Tolfenpyrad dissipation proceeded swiftly, entailing an acceptable risk to humans. Our results provide information on the distribution and transport of tolfenpyrad, as well as on the safety in using it on vegetables.
Collapse
Affiliation(s)
- Shilin Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Ye
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fanxia Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shaotao Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Cui K, Wang J, Ma G, Guan S, Liang J, Fang L, Li T, Dong Z, Ding R, Wu X, Zheng Y. Greenhouse cultivation enhances pesticide bioaccumulation in cowpeas following repeated spraying. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120172. [PMID: 38310799 DOI: 10.1016/j.jenvman.2024.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 μg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Chen ZJ, Wang HW, Li SY, Zhang YH, Qu YN, He ZH, Li XS, Liu XL. Uptake, translocation, accumulation, and metabolism of fluroxypyr-meptyl and oxidative stress induction in rice seedling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6094-6105. [PMID: 38147256 DOI: 10.1007/s11356-023-31604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Fluroxypyr-meptyl (FLUME) is heterocyclic herbicide with internal absorption and transmission characteristics. Owing to its low cost and rapid efficacy, it has been widely used to control broad-leaved weeds in wheat, corn, and rice fields. However, the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings and the extent of oxidative stress induced by it remain largely unknown, which consequently restricts the comprehensive risk assessment of FLUME residues in the environment during rice production. Hence, we systematically investigated the growth and physiological responses of rice to FLUME and analyzed its uptake, translocation, accumulation, and metabolism in rice seedlings. The results indicated that under 0-0.12 mg/L FLUME treatment, only a small proportion of FLUME was translocated upward and accumulated in rice shoots following absorption via roots, with all the translocation factor values being < 1. Moreover, the distribution and enrichment ability of FLUME in rice seedlings were greater in roots than in shoots. Furthermore, we revealed that FLUME accumulation in rice seedlings evidently inhibited their growth and activated the defense system against oxidative stress, with an increase in the activity of antioxidant and detoxifying enzymes. In addition, multiple metabolic reactions of FLUME were observed in rice seedlings, including dehalogenation, hydroxylation, glycosylation, acetylation, and malonylation. Our study provides systematic insights into the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings as well as the oxidative stress induced by FLUME accumulation, which can help improve FLUME applications and environmental risk assessments in crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Hao Wen Wang
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Si Ying Li
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Yong Heng Zhang
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Ya Nan Qu
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Zhi Hai He
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Xue Sheng Li
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Xiao Liang Liu
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China.
| |
Collapse
|