1
|
Khan MR, Sadiq MB, Vápenka L, Volpe S, Rajchl A, Torrieri E. Role of quality assessment of the recycled packaging material in determining its safety profile as food contact material. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:72-85. [PMID: 39116658 DOI: 10.1016/j.wasman.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Food packaging waste significantly impacts global environmental changes, prompting the adoption of a green circular economy approach. Recycling packaging waste is a critical element of this strategy. However, it faces challenges related to the quality of recycled materials and concerns about their safety. Thus, this review aimed to highlight different analytical methods alone or in combination to evaluate the quality of the recycled material. Furthermore, the safety and health aspects related to the migration of contaminants and their relevant regulations have also been discussed. An important parameter while selecting an appropriate recycling method is the composition and nature of the recyclate, for instance, HDPE (High-Density Polyethylene), PET (Polyethylene Terephthalate), and PP (Polypropylene) materials can be recycled using mechanical and chemical recycling, however, PVC (Polyvinyl Chloride) and PS (Polystyrene) present challenges during mechanical recycling due to lower molecular weight and complex compositions, thus are often downcycled into lower-grade products. Still, recycled papers can be more problematic than recycled plastics due to the nature of the materials and the impact of recycling. The literature review suggested that three quality properties i.e., presence of low molecular weight compounds, degree of degradation, and composition should be analyzed by using different spectroscopic, thermo-mechanical, and chromatographic techniques to obtain a detailed understanding of recycled material quality. Furthermore, recycling should be done in such a way that the migration of contaminants should be lower than the migratory limits set by the relevant authorities to avoid any toxicological effects.
Collapse
Affiliation(s)
- Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; Faculty of Food and Biochemical Technology (FPBT), Department of Food Preservation, University of Chemistry and Technology, Technická 5, Prague, Czech Republic.
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Lukáš Vápenka
- Faculty of Food and Biochemical Technology (FPBT), Department of Food Preservation, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - Stefania Volpe
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy
| | - Aleš Rajchl
- Faculty of Food and Biochemical Technology (FPBT), Department of Food Preservation, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - Elena Torrieri
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy
| |
Collapse
|
2
|
Miiro A, Odume ON, Nyakairu GW, Odongo S, Matovu H, Drago Kato C, Špánik I, Sillanpaä M, Mubiru E, Ssebugere P. Per- and poly-fluoroalkyl substances in aquatic ecosystems and wastewater treatment works in Africa: Occurrence, ecological implications, and future perspectives. CHEMOSPHERE 2024; 367:143590. [PMID: 39433094 DOI: 10.1016/j.chemosphere.2024.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of industrialization and urbanization have led to the generation of significant amounts of wastewater and waste products, often containing chemicals like per- and poly-fluoroalkyl substances (PFASs) commonly found in consumer products. PFASs are known for their persistence, ubiquity, and ecotoxicological impacts, raising concerns about potential harm to ecosystems. This paper reports the occurrence and evaluates the ecological risks of PFASs in aquatic ecosystems and wastewater treatment works (WWTWs) across Africa. We reviewed 32 papers published in the period 2009-2024 and identified a total of 35 PFAS compounds in surface waters, wastewater, sediments, fish, crocodiles, and invertebrates. Much of the reported studies came from South Africa, followed by Kenya and Nigeria. PFAS concentrations in Africa were <0.7-390.0 ng L-1 in surface waters, 0.05-772 ng g-1 dw in sediments, and <0.2-832 ng L-1 in wastewater, while the highest levels in fish and invertebrates were 460.7 and 35.5 ng g-1 ww, respectively. The PFAS levels were in the same range of data as those reported globally. However, the high concentrations of PFASs in sediments and wastewater suggest areas of point contamination and a growing risk to aquatic ecosystems from effluent discharges. Calculated risk quotients suggested that, in Africa, organisms in river systems face greater risks due to exposure to PFASs compared to those in lakes, while marine organisms might face higher risks compared to freshwater organisms. Future studies should focus on PFAS contamination sources, especially WWTWs, as emerging sources of PFASs in aquatic systems.
Collapse
Affiliation(s)
- Ashirafu Miiro
- Institute for Water Research, Rhodes University, P.O Box 94, Makhanda, South Africa; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | | | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Henry Matovu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Mika Sillanpaä
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O Box 17011, Doornfontein, 2028, South Africa; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Uni-versity, Chennai, Tamil Nadu, 602105, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda.
| |
Collapse
|
3
|
Dong L, Zhi W, Li W, Li J. Parameters optimization for decontamination and fine physical regeneration pathways of polypropylene plastics from waste lunchboxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134247. [PMID: 38603912 DOI: 10.1016/j.jhazmat.2024.134247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Due to the development of the food delivery industry, a large amount of waste lunchboxes made of homo polypropylene (PP) plastic have been generated. This study developed a new technological strategy to effectively regenerate PP from waste lunchboxes. Through response surface curve analysis, it was found that under the optimal process conditions of hot alkali washing at 80 ℃, 30 min, and pH 13, the optimal contact angle was 65.55°, indicating a good oil stain removal effect. By identifying and analyzing the characteristics of impurities in waste lunchboxes, a physical sorting and granulation regeneration process was constructed. And through large-scale statistical analysis and data collection, it was further verified that recycled PP plastics maintained their physical stability and excellent processing performance. The quality stability of recycled PP plastics in terms of impurities content was also verified. By designing different formulations specifically, recycled PP was mixed with different virgin PP and antioxidants in appropriate proportions, and extruded into particles under 150-300 mesh filtration conditions to obtain modified recycled PP. Modified recycled PP was applied in textiles, clothing, and injection molded products. In conclusion, we achieve the up-cylcing of waste PP lunchboxes instead of down-cylcing.
Collapse
Affiliation(s)
- Lipeng Dong
- GER Institute of Polymer Materials Recycling, Yichun, Jiangxi 331100, China; National Engineering Research Center of WEEE Recycling, Jingmen, Hubeiṭ 448124, China.
| | - Wenwu Zhi
- Wenzhou Environmental Development and Urban Solid Waste Comprehensive Disposal Research Center, Wenzhou, Zhejiang 325000, China
| | - Weijun Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jiahui Li
- Hunan Provincial Institute of Land and Resources Planning, Changsha, Hunan 410000, China
| |
Collapse
|
4
|
Francis DV, Dahiya D, Gokhale T, Nigam PS. Sustainable packaging materials for fermented probiotic dairy or non-dairy food and beverage products: challenges and innovations. AIMS Microbiol 2024; 10:320-339. [PMID: 38919715 PMCID: PMC11194616 DOI: 10.3934/microbiol.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
The food and beverage packaging industry has experienced remarkable growth in recent years. Particularly the requirement for appropriate packaging materials used for the sale of fermented products is boosted due to the rising acceptance of economical functional foods available to consumers on the shelves of their local supermarkets. The most popular nutraceutical foods with increased sales include natural yogurts, probiotic-rich milk, kefir, and other fermented food and beverage products. These items have mainly been produced from dairy-based or non-dairy raw materials to provide several product options for most consumers, including vegan and lactose-intolerant populations. Therefore, there is a need for an evaluation of the potential developments and prospects that characterize the growth of the food packaging industry in the global market. The article is based on a review of information from published research, encompassing current trends, emerging technologies, challenges, innovations, and sustainability initiatives for food industry packaging.
Collapse
Affiliation(s)
- Dali Vilma Francis
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, UK
- Current address: Haematology and Blood Transfusion, Basingstoke & North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Trupti Gokhale
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
5
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Li L, Zhang Z, Li X, Su J, Jiang Y, Cao J, Zhao F. Mining the sustainability of takeaway businesses in online food delivery service supply chain. Heliyon 2024; 10:e27938. [PMID: 38510049 PMCID: PMC10950709 DOI: 10.1016/j.heliyon.2024.e27938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The online food delivery service supply chain constitutes a crucial element in achieving sustainable development goals. With its prosperity, an increasing number of takeaway businesses are drawn to this sector. As their numbers rise, issues such as profitability resilience, environmental friendliness, and fulfillment of social responsibility emerge, posing potential disruptions to the service supply chain. Against this backdrop, our endeavor is to mine the sustainability of takeaway businesses using the triple bottom line. We propose a two-stage approach involving the Bayesian best-worst method and a data mining technique to derive the weights of sustainability criteria and the clusters of takeaway businesses. Subsequently, a case study is conducted focusing on takeaway businesses on the Ele.me platform in China. The results highlight economic sustainability as the most valued criterion, followed by social and environmental sustainability. Clustering outcomes reveal four distinct levels of sustainability, with a stronger performance in social sustainability compared to environmental and economic dimensions. Further discussions explore the relationship between sustainability levels, cuisine categories, and business size. Consequently, this study suggests an effective approach for advancing sustainability initiatives within the online food delivery service supply chain.
Collapse
Affiliation(s)
- Longxiao Li
- School of Business Administration, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing, 401331, China
| | - Zusheng Zhang
- College of Mechanical and Vehicle Engineering, Chongqing University, No.174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Xixi Li
- Teaching Affairs Department, Chongqing Energy College, Chongqing, 402260, China
| | - Jiafu Su
- International College, Krirk University, Bangkok, 10220, Thailand
| | - Yanling Jiang
- School of Business Administration, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing, 401331, China
| | - Jun Cao
- School of Business Administration, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing, 401331, China
| | - Fangsu Zhao
- School of Business Administration, Chongqing University of Science and Technology, No. 20, East University Town Road, Shapingba District, Chongqing, 401331, China
| |
Collapse
|