1
|
Bednarek PS, Zawala J, Kowalczuk PB. Polymer-based collectors in flotation: A review. Adv Colloid Interface Sci 2024; 335:103351. [PMID: 39566149 DOI: 10.1016/j.cis.2024.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Flotation, as a beneficiation process, stands as a foundation in mineral and metal production, handling approximately 70-80 % of the world's exploited ore annually. However, numerous challenges emerge prior to beneficiation, such as the declining quality of ore, necessitating further liberation. This deterioration results in higher energy, water, and reagent consumption. A froth flotation chemicals market analysis reveals an anticipated growth of around 30 % in the next five years, signaling a concerning trend due to the frequent toxicity associated with these chemicals. With increasingly stringent environmental regulations, there is a pressing need to explore more sustainable and non-toxic solutions. Polymers play a significant role in mineral processing as either depressants, flocculants or dispersants. The potential of natural green polymers in these capacities is actively being studied. This review delves into the relatively novel use of polymers as collectors, examining their performance and adsorption mechanisms. Among the papers reviewed, collectors formulations based on either natural or synthetic non-toxic polymers have emerged as environmentally friendly alternatives to traditional collectors. The utilization of polymers opens possibilities for creating nanoparticles, conventional polymers, temperature-responsive polymers and block copolymers with functionalities tailored for specific separation processes. These polymers have shown promising results, achieving recoveries and grades comparable to or better than conventional collectors. Additionally, they could address the challenge of declining ore quality, effectively handling finely ground particles and slimes. Properties such as those in temperature-responsive polymers can be used not only to induce hydrophobicity but also to allow the recycling of the collector for future applications.
Collapse
Affiliation(s)
- Patrycja S Bednarek
- Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S. P. Andersens veg 15a, 7031 Trondheim, Norway
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| | - Przemyslaw B Kowalczuk
- Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S. P. Andersens veg 15a, 7031 Trondheim, Norway.
| |
Collapse
|
2
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
5
|
Karwadiya J, Lützenkirchen J, Darbha GK. Retention of ZnO nanoparticles onto polypropylene and polystyrene microplastics: Aging-associated interactions and the role of aqueous chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124097. [PMID: 38703985 DOI: 10.1016/j.envpol.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.
Collapse
Affiliation(s)
- Jayant Karwadiya
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Gopala Krishna Darbha
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
6
|
Khan S, Mumtaj ZA, Khan AR, Alkahtani MQ, Aleya E, Louzon M, Aleya L. Reviewing the role of microplastics as carriers for microorganisms in absorbing toxic trace elements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46806-46819. [PMID: 38976194 DOI: 10.1007/s11356-024-34070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
The pervasive presence of microplastics in various settings, such as freshwater and marine ecosystems, has sparked serious concerns. Microplastics can operate as possible transporters for hazardous trace elements or microbes, even though they are not naturally able to actively absorb these compounds. The binding sites on the plastic's surface or the complexes that are formed with the organic material on the plastic are how this adsorption process takes place. Microplastics' surfaces also seem to be attractive to microorganisms, such as bacteria and algae. Microorganisms can adhere to the rough surface of microplastics, which facilitates their colonization and formation of biofilms. Numerous bacteria, including ones that have the ability to absorb hazardous trace elements, can be found in these biofilms. Microplastics and microbes can interact in ways that are advantageous and detrimental. Microplastics have the ability to act as a substrate for microbial growth, which could lead to an increase in the quantity of microorganisms in the surrounding environment. On the other hand, microplastics may make it easier for microbes to spread to new areas, which could help dangerous or deadly species proliferate. Research is still ongoing to determine the degree to which microplastics serve as carriers of microbes and hazardous trace elements. Comprehending the implications of microplastics, pollutants, and microorganisms in a variety of environmental conditions is difficult due to their complex interplay. This review provides a detailed description of the complexity of the problem and used the examples related to microplastics, its environmental effects, and impacts on human health.
Collapse
Affiliation(s)
- Saimah Khan
- Department of Chemistry, Integral University, Lucknow, India
| | - Zeba Ali Mumtaj
- Department of Chemistry, Integral University, Lucknow, India
| | | | - Meshel Qablan Alkahtani
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Enis Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France
| | - Maxime Louzon
- Crisalid Living Laboratory, Envisol, 29 Avenue Victor Hugo, 38800, Le Pont De Claix, France
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France.
| |
Collapse
|
7
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
8
|
Pollet IL, Acmc S, Kelly BG, Baak JE, Hanifen KE, Maddox ML, Provencher JF, Mallory ML. The relationship between plastic ingestion and trace element concentrations in Arctic seabirds. MARINE POLLUTION BULLETIN 2024; 203:116509. [PMID: 38788276 DOI: 10.1016/j.marpolbul.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seabirds ingest contaminants linked to their prey's tissues, but also adsorbed to ingested plastic debris. To explore relationships between ingested plastics and trace elements concentrations, we analyzed 25 essential non-essential trace elements in liver tissue in relation to plastic content in the gastrointestinal tract in adults of four species of Arctic seabirds with different propensity to ingest plastic. Linear Discriminant Analysis (LDA) provided a clear separation between species based on element concentrations, but not among individuals with and without plastics. Molybdenum, copper, vanadium, and zinc were strong drivers of the LDA, separating northern fulmars (Fulmarus glacialis) from other species (60.4 % of explained between-group variance). Selenium, vanadium, zinc, and mercury were drivers separating black-legged kittiwakes (Rissa tridactyla) from the other species (19.3 % of explained between-group variance). This study suggests that ingestion of plastic particles has little influence on the burden of essential and non-essential trace elements in Arctic seabird species.
Collapse
Affiliation(s)
- Ingrid L Pollet
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada.
| | - Sululiit Acmc
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Brendan G Kelly
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Julia E Baak
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada; Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | | | - Mark L Maddox
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| | - Jennifer F Provencher
- National Wildlife Research Centre, Environment and Climate Change Canada, Raven Road, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Mark L Mallory
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| |
Collapse
|
9
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
Arisekar U, Shalini R, Iburahim SA, Deepika S, Reddy CPK, Anantharaja K, Albeshr MF, Ramkumar S, Kalidass B, Tamilarasan K, Kumar NN. Biomonitoring of mercury and selenium in commercially important shellfish: Distribution pattern, health benefit assessment and consumption advisories. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:122. [PMID: 38483653 DOI: 10.1007/s10653-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 03/19/2024]
Abstract
This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg-1, 0.182 to 0.553 mg kg-1, and 0.176 to 0.255 mg kg-1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg-1, 0.022 to 0.042 mg kg-1 and 0.011 to 0.024 mg kg-1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg-1 and 0.082 mg kg-1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg-1) and C. natator (0.553 mg kg-1), while Hg was found high in C. griseum (0.082 mg kg-1) and low in P. vannamei (0.009 mg kg-1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg-1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg-1 for crustaceans and 1.0 mg kg-1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk-benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | | | - S Deepika
- Department of Aquatic Animal Health Management, Dr MGR Fisheries College and Research Institute, Thalainayeru, Nagapattinam, 614 712, India
| | | | - Kanagaraja Anantharaja
- Regional Research Centre of ICAR-Central Institute of Freshwater Aquaculture, Bengaluru, Karnataka, 560089, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Sugumar Ramkumar
- ICAR-Central Marine Fisheries Research Institute, Mumbai, Maharashtra, 400061, India
| | | | - K Tamilarasan
- Livestock Production and Management Division, ICAR-Research Complex for NEH Region, Kolasib, Mizoram, 796 081, India
| | - N Nandha Kumar
- ICAR-Indian Institute of Soil and Water Conservation Research Centre, Vasad, Gujarat, 388 306, India
| |
Collapse
|