1
|
Salvo A, Masciulli F, Ambroselli D, Romano E, Ingallina C, Spano M, Di Matteo G, Giusti AM, Di Sotto A, Percaccio E, Di Giacomo S, Vinci G, Prencipe SA, Acciaro E, Sobolev AP, Costantini L, Merendino N, Giulianelli R, Campiglia E, Mannina L. Hydrolysates from cauliflower and artichoke industrial wastes as biostimulants on seed germination and seedling growth: a chemical and biological characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39155832 DOI: 10.1002/jsfa.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cauliflower (Brassica oleracea L.) and globe artichoke (Cynara scolymus L.) are vegetables with a high waste index mainly related to stems and leaves. In this study, enzymatic hydrolysates obtained from these wastes were proposed to be used as plant biostimulants. Life cycle assessment methodology was also applied to evaluate environmental performances related to cauliflower and artichoke byproducts. RESULTS Hydrolysates (HYs) were chemically and biologically characterized. Amino acids, organic acids, amines, polyols, mineral elements, phenols, tannins, flavonoids and sulfur compounds were identified and quantified by means of NMR, inductively coupled plasma mass spectrometry and UV-visible analyses. Cauliflower leaf and flower HYs showed the highest concentration of free amino acids, whereas stems showed the highest concentration of Ca. Regarding artichoke, asparagine, glutamine and aspartic acid were exclusively detected in stems, whereas artichoke leaves showed the highest Mg and Mn levels together with the highest antioxidant activity. The HYs diluted in water were tested as biostimulants. The impacts of five concentrations of HYs (0.00, 0.28, 0.84, 2.52 and 7.56 g L-1) on seed germination and early seedling growth of crimson clover, alfalfa, durum wheat and corn were investigated. CONCLUSIONS The application of artichoke biostimulant (0.28 g L-1) positively influenced the coefficient of velocity of germination in alfalfa, crimson clover and durum wheat, whereas cauliflower biostimulant significantly improved corn germination speed. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Salvo
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Masciulli
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Donatella Ambroselli
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Enrico Romano
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Cinzia Ingallina
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Mattia Spano
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health, Rome, Italy
| | - Giuliana Vinci
- Department of Management, Sapienza University of Rome, Rome, Italy
| | | | - Erica Acciaro
- 'Segre-Capitani' Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Monterotondo, Italy
| | - Anatoly P Sobolev
- 'Segre-Capitani' Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Monterotondo, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Roberto Giulianelli
- Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, Viterbo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, Viterbo, Italy
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Food Chemistry Laboratory, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Islam N, Roy K, Barman P, Rabha S, Bora HK, Khare P, Konwar R, Saikia BK. Chemical and toxicological studies on black crust formed over historical monuments as a probable health hazard. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132939. [PMID: 37988938 DOI: 10.1016/j.jhazmat.2023.132939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Studies to date have mostly investigated environmental factors responsible for deterioration of historical monuments. Black crusts formed on historical monuments are considered as factor for deterioration of structures or as an indicator of environmental status of the surrounding area. Black crust formed on historical monuments has never been investigated as a health hazard. Herein, for the first time, we performed in vitro and in vivo toxicology studies of black crust formed on three culturally-rich historical monuments (Rang Ghar, Kareng Ghar, and Talatal Ghar) of the Indian subcontinent to test their toxicological effect. Black crust suspension in ultrapure water was found not to be considerably toxic to the cells upon direct short-term exposure. However, the sub-acute nasal exposure of the black crust suspension in Swiss albino mice produced lung-specific pathologies and mortality. Additionally, structural formation of the black crust along with the speciation of potentially hazardous elements (PHEs), polyaromatic hydrocarbon (PAHs), and other metals were investigated. Overall, these results indicate the potential of black crust deposited on historical monuments as health hazard owing to the atmospheric pollution of the surroundings. However, it may be noted that black crust and its components have very low possibility of health implication unless they are disturbed without proper care.
Collapse
Affiliation(s)
- Nazrul Islam
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kallol Roy
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Pankaj Barman
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Shahadev Rabha
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himangsu Kousik Bora
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
| | - Rituraj Konwar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wilhelm K, Longman J, Standish CD, De Kock T. The Historic Built Environment As a Long-Term Geochemical Archive: Telling the Time on the Urban "Pollution Clock". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12362-12375. [PMID: 37436401 PMCID: PMC10448721 DOI: 10.1021/acs.est.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford
Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography
and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, U.K.
| | - Jack Longman
- Marine
Isotope Geochemistry, Institute for Chemistry and Biology of the Marine
Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Department
of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United
Kingdom
| | - Christopher D. Standish
- School
of Ocean & Earth Sciences, University
of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K.
| | - Tim De Kock
- Antwerp
Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp Blindestraat 9, 2000 Antwerp, Belgium
| |
Collapse
|
4
|
Gallego-Cartagena E, Morillas H, Morgado-Gamero W, Fuentes-Gandara F, Vacca-Jimeno V, Salcedo I, Madariaga JM, Maguregui M. Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution. CHEMOSPHERE 2022; 309:136743. [PMID: 36209867 DOI: 10.1016/j.chemosphere.2022.136743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (μ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by μ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Didactic of Mathematics, Experimental and Social Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Basque Country, Spain
| | - Wendy Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Fabio Fuentes-Gandara
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Víctor Vacca-Jimeno
- Faculty of Basic Sciences, Universidad Del Atlántico, Km5 Vía Puerto Colombia, 081007, Atlántico, Colombia
| | - Isabel Salcedo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
5
|
Pozo-Antonio JS, Cardell C, Comite V, Fermo P. Characterization of black crusts developed on historic stones with diverse mineralogy under different air quality environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29438-29454. [PMID: 34302602 PMCID: PMC9001199 DOI: 10.1007/s11356-021-15514-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Black crusts (BCs) are one of the most critical alteration forms found on stones belonging to architectural heritage. Since they could be considered as passive samplers of atmospheric pollution, it would be plausible to establish relations between the air contamination and the BCs. With this aim, we have characterized BCs collected on historic buildings from two Spanish cities (Granada and Vigo) with different polluted atmospheres, as well as formed on stone substrates of varied mineralogy and texture. Likewise, in order to assess the impact of the atmospheric pollutants on the growth of BCs, quartz fiber filters were used as surrogate substrates and placed nearby the studied buildings to collect and analyze the aerosol particulate matter (PM). To this end, an array of complementary analytical techniques was used to evaluate the mineralogy, chemical composition, and texture of the BCs and to establish the correlation with the ions, OC (organic carbon), and EC (elemental carbon) detected in the PM on the quartz fiber filters. As result, BCs developed on carbonate substrates from Granada show more complex structure than those from Vigo, which are thinner because of frequent rain episodes. In both cities, NaCl, Pb-Cl, and Ca-Cl-rich particles, Ca-phosphate particles and clusters of Ba-sulfate-rich particles were detected. However, metal-rich rounded particles were more abundant in Granada's BCs, including soot particles. BCs from Granada were richer in carbonaceous components (OC and EC) than the Vigo's BCs. Although in the filters PM did not show EC-mainly due to traffic-, in the BCs from both locations OC and EC were detected. Therefore, this different composition was related to the mineralogy of the stones and the higher pollution of Granada in contrast to the industrial and sea-exposed city of Vigo.
Collapse
Affiliation(s)
- José Santiago Pozo-Antonio
- CINTECX, GESSMin group, Dpto. de Enxeñaría de Recursos Naturais e Medio Ambiente, Universidade de Enxeñaría de Minas e Enerxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Carolina Cardell
- Department of Mineralogy and Petrology, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Valeria Comite
- Dipartimento di Chimica, Via Golgi 19, Università degli Studi di Milano, 20133 Milan, Italy
| | - Paola Fermo
- Dipartimento di Chimica, Via Golgi 19, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Geochemical-Microscopical Characterization of the Deterioration of Stone Surfaces in the Cloister of Santa Maria in Vado (Ferrara, Italy). HERITAGE 2021. [DOI: 10.3390/heritage4040167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Santa Maria in Vado is a monument in the rich artistic heritage of the city of Ferrara (north of Italy). In this paper we want to investigate the state of conservation of tombstones, cloister and the entrance to the basilica, in order to keep them in the best possible state for the future generations. From the chemical characterization, the state of conservation was determined focusing on the biodeteriogenic and non-biodeteriogenic factors, which determine a series of unwanted changes in the physical, mechanical and above all aesthetic properties of the material, often closely connected with the environment and conservation conditions. On the macroscopic observation, the state of conservation of the tombstones appeared to be very deteriorated through aesthetic and structural damage. In detail, the stereo microscope observation of samples collected from the tombstones show the presence of efflorescence probably caused by the abundant of water that bring the salts present inside the rock into solution. Relating the columns, μ-XRF analysis confirm the carbonate composition of samples and presence of iron and sulfur. Finally, SEM observation highlighted the presence of black crust on arch samples and the presence of pollen on the black crust and spheroidal particles probably related to atmospheric pollution.
Collapse
|
7
|
Wilhelm K, Longman J, Orr SA, Viles H. Stone-built heritage as a proxy archive for long-term historical air quality: A study of weathering crusts on three generations of stone sculptures on Broad Street, Oxford. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143916. [PMID: 33338691 DOI: 10.1016/j.scitotenv.2020.143916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Black crusts on historic buildings are mainly known for their aesthetic and deteriorative impacts, yet they also can advance air pollution research. Past air pollutants accumulate in distinct layers of weathering crusts. Recent studies have used these crusts to reconstruct pollution to improve our understanding of its effects on stone-built heritage. However, the majority of the studies provide only coarse resolution reconstruction of pollution, able to distinguish between 'inner = old' and 'outer = modern' crust layers. In contrast, very few studies have linked distinct periods of exposure to pollution variations in the composition of these crusts. Here we address this research gap by developing a finer-scale resolution pollution record. Our study explored the unique configuration of limestone sculptures in central Oxford, which have been exposed over the last 350 years to three different periods of atmospheric pollution; the early Industrial Revolution, the Victorian period and the 20th century. When the first two generations of sculptures were moved to less polluted areas, their 'pollution clocks' were stopped. Here we discuss the potential of investigating the 'pollution clock' recorded in the geochemical makeup of each sculpture generation's weathering crust layers. We found the analysed crusts record clear changes related to the evolution of modes of transport and industrial and technological development in Oxford. Higher levels of Arsenic (As), Selenium (Se) are linked to pollution from coal burning during Victorian times and Lead (Pb) indicated leaded petrol use in modern times. Our work shows that stone-built heritage with a known history of air pollution exposure allows improving the pollution reconstruction resolution of these weathering crusts. The results provide the basis for calibrating long-term geochemical archives. This approach may be used to reconstruct past air quality and has the potential to inform stone weathering research and conservation, in addition to improving the reconstruction of historical pollution.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.
| | - Jack Longman
- Marine Isotope Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany.
| | - Scott Allan Orr
- Bartlett School Environment, Energy and Resources, Faculty of the Built Environment, University College London, UK.
| | - Heather Viles
- Oxford Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.
| |
Collapse
|
8
|
Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. CHEMOSPHERE 2021; 263:128190. [PMID: 33297155 DOI: 10.1016/j.chemosphere.2020.128190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In analytical chemistry, biomonitoring is known as the methodology, which consider the use of living organisms to monitor and assess the impact of different contaminants in a known area. This type of monitoring is a relatively inexpensive method and easy to implement, being a viable alternative to be developed in sites where there is no infrastructure/instruments for a convenctional air quality monitoring. These organisms, having the capability to monitor the pollution, are also known as passive biomonitors (PBs), since they are able to identify possible contamination sources without the need of any additional tool. In this work, a multianalytical methodology was applied to verify the usefulness of naturally growing Grimmia genus mosses as PBs of atmospheric heavy metals pollution. Once mosses were identified according to their morphology and taxonomy, thei ability to accumulate particulate matter (PM) was determined by SEM. EDS coupled to SEM also allowed to identify the main metallic particles deposited and finally, an acid digestion of the mosses and a subsequent ICP-MS study define more precisely the levels of metals accumulated on each collected moss. The study was focused on six sampling locations from the Bilbao Metropolitan area (Biscay, Basque Country, north of Spain). The experimental evidences obtained allowed to propose naturally growing Grimmia genus as PB of atmospheric heavy metals pollution and to identify the anthropogenic sources that contribute to the emission of the airborne particulate matter rich in metals, evaluating in this sense the atmospheric heavy metals pollution of the selected locations.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de La Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Didactic of Mathematics and Experimental Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - José Antonio Carrero
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
9
|
Morillas H, Maguregui M, Gallego-Cartagena E, Marcaida I, Carral N, Madariaga JM. The influence of marine environment on the conservation state of Built Heritage: An overview study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140899. [PMID: 32721614 DOI: 10.1016/j.scitotenv.2020.140899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Marine aerosol is a chemical complex system formed by inorganic salts and organic matter, together with airborne particulate matter from the surrounding environment. The primary particles transported in the marine aerosol can experiment different chemical reactions in the atmosphere, promoting the so-called Secondary Marine Aerosol particles. These kinds of particles (nitrates, sulfates, chlorides etc.), together with the natural crustal or mineral particles and the metallic airborne particulate matter emitted by anthropogenic sources (road traffic, industry, etc.) form clusters which then can be deposited on building materials from a specific construction following dry deposition processes. Apart from that, the acid aerosols (e.g. CO2, SO2, NOX, etc.) present in urban-industrial environments, coming also from anthropogenic sources, can be deposited in the buildings following dry or a wet deposition mechanisms. The interactions of these natural and anthropogenic stressors with building materials can promote different kind of pathologies. In this overview, the negative influence of different marine environments (direct or diffuse influence), with or without the influence of an urban-industrial area (direct or diffuse), on the conservation state of historical constructions including a wide variety of building materials (sandstones, limestones, artificial stones, bricks, plasters, cementitious materials, etc.) is presented.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Didactic of Mathematics and Experimental Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain.
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - Euler Gallego-Cartagena
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Iker Marcaida
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Nerea Carral
- Department of Pharmacology, Faculty of Medicine, University of Basque Country UPV/EHU, 48940 Leioa, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|
10
|
Morillas H, Gredilla A, Gallego-Cartagena E, Upasen S, Maguregui M, Madariaga JM. PM 10 spatial distribution and metals speciation study in the Bilbao metropolitan area during the 2017-2018 period. CHEMOSPHERE 2020; 259:127482. [PMID: 32640380 DOI: 10.1016/j.chemosphere.2020.127482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Speciation of respirable particles is becoming increasingly important from an epidemiological and analytical point of view to determine the potential effects of air pollution on human health. For this reason, current laws and analytical sampling methods focus on particle size, as it turns out to be the main factor for the greater or lesser penetration into the airways. In this sense, particles of less than 10 μm in diameter (<10 μm), referred to as PM10, are the particles that have a higher capacity for access to the respiratory tract and, therefore, more significant effect on them. In this sense, one of the most important factors that have a key role in the PM10 atmospheric pollution effect is the dispersion effect with the direct influence of natural effects such as wind, rain, topography apart from others. In this work, PM10 data extracted from the Basque Government environmental stations (19 sampling points) in the Biscay province (Basque Country, north of Spain) were combined with the results obtained from the use of self-made passive samplers (SMPS) in the same sampling points areas and subsequently, the sample analysis with a non-invasive elemental technique (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) was carried out. Thanks to this methodology, it was possible to determine a wide variety of metals in PM10 such as Al, Fe, Cr, Ni, Pb, Zn, Ti, etc. Most of them present as oxides and others as part of natural aggregations such as quartz, aluminosilicates, phosphates etc.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Mathematics and Experimental Sciences Didactics, Faculty of Education, Philosophy and Anthropology, University of the Basque Country UPV/EHU, II Building, Oñati Plaza 3, 20018, Donostia-San Sebastian, Basque Country, Spain.
| | - Ainara Gredilla
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, E-2018, San Sebastián, Basque Country, Spain
| | - Euler Gallego-Cartagena
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Civil and Environmental, Universidad de La Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Settakorn Upasen
- Research Unit of Developing Technology and Innovation of Alternative Energy for Industries, Burapha University, 169 Long-Hard Bangsean Road, Seansuk Sub-District, Muang District, Chonburi Province, 20131, Thailand
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| |
Collapse
|
11
|
Islam N, Saikia BK. Atmospheric particulate matter and potentially hazardous compounds around residential/road side soil in an urban area. CHEMOSPHERE 2020; 259:127453. [PMID: 32610175 DOI: 10.1016/j.chemosphere.2020.127453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient coarse and fine particulate matter (PM10 and PM2.5) causes premature death worldwide due to the nature of their particle size. It contains potentially hazardous elements (PHEs) and polycyclic aromatic hydrocarbons (PAHs). This study aims to quantify the particulate matter (PM) loads on the surface of soil in twenty-five different locations including residential and roadside areas of an urban area in Northeast India. This study shows that the 24h mean concentration of PM (121 ± 49 μg/m3 for PM2.5 and 153 ± 45 μg/m3 for PM10) exceeded more than three times the WHO's air quality standard limit for both PM2.5 (25 μg/m3) and PM10 (50 μg/m3) indicating poor air quality in the urban area during monsoon season. The health risk assessment of PAHs and PHEs including mutagenic or carcinogenic potency was observed to be higher as compared to other studies carried out on road traffic emissions in a similar type of urban area. This study also provides a brief database on the deposition of PM on the soil surfaces due to wet-deposition that would help to increase public awareness in such type of urban area for the control of PM pollution and further remediation.
Collapse
Affiliation(s)
- Nazrul Islam
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India
| | - Binoy K Saikia
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India.
| |
Collapse
|
12
|
Comite V, Pozo-Antonio JS, Cardell C, Randazzo L, La Russa MF, Fermo P. A multi-analytical approach for the characterization of black crusts on the facade of an historical cathedral. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Morillas H, Maguregui M, Gallego-Cartagena E, Huallparimachi G, Marcaida I, Salcedo I, Silva LFO, Astete F. Evaluation of the role of biocolonizations in the conservation state of Machu Picchu (Peru): The Sacred Rock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1379-1388. [PMID: 30527887 DOI: 10.1016/j.scitotenv.2018.11.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Machu Picchu Inca sanctuary (Cusco Region, Peru) was constructed on a granitic plateau, better known as Vilcabamba batholith. One of the most important carved granitic rocks from this archaeological site is the Sacred Rock, used by Inca citizens for religious rituals. Due to the location and climatic conditions, different rocks from this archaeological site are affected by biocolonizations. Concretely, the Sacred Rock shows flaking and delamination problems. In this work, a non-destructive multi analytical methodology has been applied to determine the possible role of the biodeteriogens, forming the biological patina on the Sacred Rock, in the previously mentioned conservation problems. Before characterizing the biological patina, a mineralogical characterization of the granitic substrate was conducted using X-ray Diffraction, Raman microscopy (RM) and micro energy dispersive X-ray fluorescence spectrometry. For the identification of the main biodeteriogens in the biofilm, Phase Contrast Microscopy was used. RM also allowed to determine the distribution (imaging) and the penetration (depth profiling) of the biogenic pigments present in the biopatina. Thanks to this study, it was possible to asses that some colonizers are growing on inner areas of the rock, reinforcing their possible assistance in the delamination. Moreover, the in-depth distribution of a wide variety of carotenoids in the patinas allowed to approach the penetration ability of the main biodeteriogens and the diffusion of these biogenic pigments to the inner areas of the rocky substrate.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Mathematics and Experimental Sciences Didactics, Faculty of Education, Philosophy and Anthropology, University of the Basque Country UPV/EHU, II Building, Oñati Plaza 3, 20018 Donostia-San Sebastian, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain.
| | - Euler Gallego-Cartagena
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Gladys Huallparimachi
- Ministerio de Cultura - Dirección Desconcentrada de Cultura Cusco, Dirección PAN Machu Picchu, Peru; Universidad Nacional San Antonio Abad del Cusco, P.O. Box 921, Av. de la Cultura, N° 733, Cusco, Peru
| | - Iker Marcaida
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Isabel Salcedo
- Department of Plant Biology & Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia; Faculdade Meridional IMED, 304-Passo Fundo - RS 99070-220, Brazil
| | - Fernando Astete
- Ministerio de Cultura - Dirección Desconcentrada de Cultura Cusco, Dirección PAN Machu Picchu, Peru
| |
Collapse
|
14
|
Rota E, Braccino B, Dei R, Ancora S, Bargagli R. Organisms in wall ecosystems as biomonitors of metal deposition and bioavailability in urban environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10946-10955. [PMID: 29399741 DOI: 10.1007/s11356-017-1170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Vegetated walls are common structures in urban environments, and aiming to test the hypothesis that the biogenic crusts and plant and animal communities inhabiting these vertical surfaces can be more reliable indicators of atmospheric metal deposition than plants or animals inhabiting urban soils, we analyzed the chemical composition of the wall crusts, moss cushions (Tortula muralis) and the shells, soft tissues and feces of the stonework snail Papillifera papillaris collected in three small towns in Tuscany (Central Italy). Crusts and mosses from the same stones or bricks indicated that Cd, Pb, and Zn are the main pollutants released by vehicular traffic, while Hg and Cu probably originate from other sources. The soft tissues of P. papillaris (purged of the gut contents) showed as well higher Cd, Pb, and Zn and lower Hg concentrations at more traffic-affected sites, while data from shells and feces suggested that this species probably ingests large amounts of Al, Cr, Fe, Mn, and Pb, and avoids eating mosses. Most lithophilic elements and Pb are scarcely absorbed in the snail digestive tract and soft tissues mainly accumulate Cd and essential elements such as Cu and Mn. This study definitively confirms the extraordinary Mn bioaccumulation in P. papillaris soft tissues and reports extraordinary Mn levels also in the shell. The shells also contain unusually high Cu, Fe, and Zn concentrations and this bioaccumulation likely remains after death, potentially providing a historical record of the snail exposure to metals over lifetime.
Collapse
Affiliation(s)
- Emilia Rota
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy.
| | - Bernardino Braccino
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Riccardo Dei
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Roberto Bargagli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
15
|
Morillas H, Maguregui M, Bastante J, Huallparimachi G, Marcaida I, García-Florentino C, Astete F, Madariaga JM. Characterization of the Inkaterra rock shelter paintings exposed to tropical climate (Machupicchu, Peru). Microchem J 2018. [DOI: 10.1016/j.microc.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Morillas H, Marcaida I, García-Florentino C, Maguregui M, Arana G, Madariaga JM. Micro-Raman and SEM-EDS analyses to evaluate the nature of salt clusters present in secondary marine aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:691-697. [PMID: 28992496 DOI: 10.1016/j.scitotenv.2017.09.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Marine aerosol is a complex inorganic and organic chemistry system which contains several salts, mainly forming different type of salt clusters. Different meteorological parameters have a key role in the formation of these aggregates. The relative humidity (%RH), temperature, CO, SO2 and NOx levels and even the O3 levels can promote different chemical reactions giving rise to salt clusters with different morphology and sizes. Sulfates, nitrates and chlorides and even mixed chlorosulfates or nitrosulfates are the final compounds which can be found in environments with a direct influence of marine aerosol. In order to collect and analyze these types of compounds, the use of adequate samplers is crucial. In this work, salt clusters were collected thanks to the use of a self-made passive sampler (SMPS) installed in a 20th century historic building (Punta Begoña Galleries, Getxo, Basque Country, Spain) which is surrounded by a beach and a sportive port. These salt clusters were finally analyzed directly by micro-Raman spectroscopy and Scanning Electron microscopy coupled to Energy Dispersive X-ray spectrometry (SEM-EDS).
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain.
| | - Iker Marcaida
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Cristina García-Florentino
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - Gorka Arana
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|
17
|
Oliveira MLS, Navarro OG, Crissien TJ, Tutikian BF, da Boit K, Teixeira EC, Cabello JJ, Agudelo-Castañeda DM, Silva LFO. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. ENVIRONMENTAL RESEARCH 2017; 158:450-455. [PMID: 28692927 DOI: 10.1016/j.envres.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles.
Collapse
Affiliation(s)
- Marcos L S Oliveira
- Universidade do Vale do Rio do Sinos, ITT-Performance, Av. Unisinos, 950 - Cristo Rei, RS 93022-000, Brazil; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Orlando G Navarro
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Tito J Crissien
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Bernardo F Tutikian
- Universidade do Vale do Rio do Sinos, ITT-Performance, Av. Unisinos, 950 - Cristo Rei, RS 93022-000, Brazil
| | - Kátia da Boit
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Elba C Teixeira
- Faculty of Engineering. Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Juan J Cabello
- Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS, Brazil
| | - Dayana M Agudelo-Castañeda
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55 - 66, Barranquilla, Colombia.
| |
Collapse
|
18
|
La Russa MF, Fermo P, Comite V, Belfiore CM, Barca D, Cerioni A, De Santis M, Barbagallo LF, Ricca M, Ruffolo SA. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:297-309. [PMID: 28346903 DOI: 10.1016/j.scitotenv.2017.03.185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
This paper deals with the analysis of black crust coming from the statue of Oceanus belonging to the Fontana di Trevi (Rome). This monument is undoubtedly one of the main touristic attractions of Rome. During the restoration held between 2014 and 2015, some diagnostic analyses had been carried out. It has been highlighted that the sheltered surfaces suffer the formation of black crust, especially on the marble statues. The possibility to sample those degradation products, together with the unaltered substrate, represented an excellent opportunity to characterize the marble itself, to assess the impact of the urban air pollution on the stone material, and to detect the pollutant on a precise timescale. In fact, it is known that the previous restoration of the fountain had been carried out between 1989 and 1991 then, information about the air pollution over the last 25years can be highlighted, because it has been proved that black crusts act as passive samplers of pollution. In order to fully characterize those samples, several techniques were used, including optical and scanning electron microscopy, X-ray diffraction, laser ablation inductively coupled plasma mass spectrometry, infrared spectroscopy and ion chromatography. Furthermore, a new methodology based on CHN (Carbon, Hydrogen, Nitrogen) analysis has been developed for the quantification of the two main constituents of the carbonaceous fraction present in the black crusts, i.e. OC (organic carbon) and EC (elemental carbon). This integrated approach proposed in the present study allowed us to gain information about the mineralogical phases and the elements within the crusts and at the crust-substrate interface, giving the possibility to identify the pollution sources causing the stone decay within the monument.
Collapse
Affiliation(s)
- Mauro F La Russa
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy
| | - Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Valeria Comite
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy; Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Cristina M Belfiore
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Catania, Italy
| | - Donatella Barca
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy
| | | | | | | | - Michela Ricca
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy
| | - Silvestro A Ruffolo
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Rende, Italy.
| |
Collapse
|
19
|
In situ X-ray fluorescence-based method to differentiate among red ochre pigments and yellow ochre pigments thermally transformed to red pigments of wall paintings from Pompeii. Anal Bioanal Chem 2017; 409:3853-3860. [DOI: 10.1007/s00216-017-0329-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 11/25/2022]
|
20
|
Calparsoro E, Maguregui M, Giakoumaki A, Morillas H, Madariaga JM. Evaluation of black crust formation and soiling process on historical buildings from the Bilbao metropolitan area (north of Spain) using SEM-EDS and Raman microscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9468-9480. [PMID: 28236200 DOI: 10.1007/s11356-017-8518-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
In the present work, several building materials suffering from black crusts and soiled surfaces were evaluated by scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDS) and micro-Raman spectroscopy. The goal was to examine the elemental and molecular composition, the distribution on the samples, and the morphology of endogenous and exogenous compounds on those black crusts and soiled surfaces. The black crusts were deposited over different building materials such as limestone, sandstone, and brick that constitute a small construction called "malacate" as well as over a limestone substrate of a cemetery gate. Both constructions are dated back to the beginning of the twentieth century. The samples of soiling were taken from the façade of a building constructed in the 1980s. The analytical evaluation allowed in a first stage the determination of the composition and the observation of the morphology of soiling and black crusts. In addition, the evaluation of the compositions of the soiling and black crusts of different grade and formation allowed the assessment of the main weathering phenomena that the buildings have suffered, which were found to be sulfate impact, marine aerosol impact, depositions of metallic particles, crustal particulate matter depositions, carbonaceous particles, biodeterioration, and vandalism.
Collapse
Affiliation(s)
- Estefanía Calparsoro
- Department of Geography, History and Archaeology, Faculty of Arts, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain.
| | - Anastasia Giakoumaki
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| |
Collapse
|
21
|
García-Florentino C, Maguregui M, Marguí E, Queralt I, Carrero JA, Madariaga JM. Development of X-ray Fluorescence Quantitative Methodologies To Analyze Aqueous and Acid Extracts from Building Materials Belonging to Cultural Heritage. Anal Chem 2017; 89:4246-4254. [DOI: 10.1021/acs.analchem.7b00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristina García-Florentino
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department
of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| | - Eva Marguí
- Department
of Chemistry, University of Girona, Faculty of Sciences, C/M.Aurèlia
Campmany, 69, Girona, Spain
| | - Ignasi Queralt
- Institute
of Environmental
Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jose Antonio Carrero
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|
22
|
Morillas H, García-Galan J, Maguregui M, García-Florentino C, Marcaida I, Carrero JA, Madariaga JM. In-situ multianalytical methodology to evaluate the conservation state of the entrance arch of La Galea Fortress (Getxo, north of Spain). Microchem J 2016. [DOI: 10.1016/j.microc.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Marcaida I, Maguregui M, Morillas H, García-Florentino C, Knuutinen U, Carrero JA, Fdez-Ortiz de Vallejuelo S, Pitarch Martı́ A, Castro K, Madariaga JM. Multispectroscopic and Isotopic Ratio Analysis To Characterize the Inorganic Binder Used on Pompeian Pink and Purple Lake Pigments. Anal Chem 2016; 88:6395-402. [DOI: 10.1021/acs.analchem.6b00864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iker Marcaida
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department
of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - Héctor Morillas
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Cristina García-Florentino
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Ulla Knuutinen
- University of Helsinki, Faculty of Science, Department
of Chemistry, P.O. Box 44, Helsinki, FI-00014, Finland
- Jyväskylä University, Faculty of Humanities, Department
of Art and Culture Studies/Museology,
P.O. Box 35, FIN-40014 Jyväskylä, Finland
| | - Jose Antonio Carrero
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Silvia Fdez-Ortiz de Vallejuelo
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Africa Pitarch Martı́
- UMR-CNRS
5199 PACEA, Préhistoire, Paléoenvironnement, Patrimoine, Université de Bordeaux, Bâtiment B18, Allée Geoffroy St.
Hilaire, 33615 Pessac, France
- Grup
de Recerca Aplicada al Patrimoni Cultural (GRAPAC), Departament de
Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat
de Biociènces, Univeritat Autònoma de Barcelona, Campus
Bellaterra, 08193 Bellaterra, Spain
| | - Kepa Castro
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|