1
|
Chen L, Ma J, Xu W, Shen F, Yang Z, Sonne C, Dietz R, Li L, Jie X, Li L, Yan G, Zhang X. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution. Evol Appl 2024; 17:e13731. [PMID: 38894980 PMCID: PMC11183199 DOI: 10.1111/eva.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Jinnan Ma
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- College of Continuing EducationYunnan Normal UniversityKunmingChina
| | - Wencai Xu
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduChina
| | | | - Christian Sonne
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Rune Dietz
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Linzhu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiaodie Jie
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Lu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Guoqiang Yan
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiuyue Zhang
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
2
|
Ciesielski TM, Sonne C, Smette EI, Villanger GD, Styrishave B, Letcher RJ, Hitchcock DJ, Dietz R, Jenssen BM. Testosterone and persistent organic pollutants in east Greenland male polar bears (Ursus maritimus). Heliyon 2023; 9:e13263. [PMID: 37101474 PMCID: PMC10123070 DOI: 10.1016/j.heliyon.2023.e13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are chemicals that undergo long-range transport to the Arctic. These chemicals possess endocrine disruptive properties raising concerns for development and reproduction. Here, we report the relationship between concentrations of testosterone (T) and persistent organic pollutant (POPs) in 40 East Greenland male polar bears (Ursus maritimus) sampled during January to September 1999-2001. The mean ± standard concentrations of blood T were 0.31 ± 0.49 (mean ± SD) ng/mL in juveniles/subadults (n = 22) and 3.58 ± 7.45 ng/mL in adults (n = 18). The ∑POP concentrations (mean ± SD) in adipose tissue were 8139 ± 2990 ng/g lipid weight (lw) in juveniles/subadults and 11,037 ± 3950 ng/g lw in adult males, respectively, of which Σpolychlorinated biphenyls (ΣPCBs) were found in highest concentrations. The variation in T concentrations explained by sampling date (season), biometrics and adipose tissue POP concentrations was explored using redundancy analysis (RDA). The results showed that age, body length, and adipose lipid content in adult males contributed (p = 0.02) to the variation in POP concentrations. However, although some significant relationships between individual organochlorine contaminants and T concentrations in both juveniles/subadults and adult polar bears were identified, no significant relationships (p = 0.32) between T and POP concentrations were identified by the RDAs. Our results suggest that confounders such as biometrics and reproductive status may mask the endocrine disruptive effects that POPs have on blood T levels in male polar bears, demonstrating why it can be difficult to detect effects on wildlife populations.
Collapse
Affiliation(s)
- Tomasz M. Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Corresponding author.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Corresponding author.
| | - Eli I. Smette
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Mental and Physical Health, Department of Child Health and Development, Norwegian Institute of Public Health, PO Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Robert J. Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn M. Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
3
|
Ultra-Sensitive Si-Based Optical Sensor for Nanoparticle-Size Traditional Water Pollutant Detection. PHOTONICS 2022. [DOI: 10.3390/photonics9050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced in this paper. The introduced sensor works in the near-infrared region, 900 nm to 2500 nm spectral range. The proposed structure consists of a Si layer with an optimized thickness of 300 nm on the top of the Al layer acting as a back reflector. On the top of the Si layer, the water pollutants are modeled as nanoparticle materials of different sizes. The finite difference time domain method is utilized to optimize the thicknesses of the Si layer by analyzing the optical light absorption considering different Si layer thicknesses and different pollutant nanoparticles’ sizes. Different interpolation techniques, including polynomials with various degrees and locally weighted smoothing quadratic regression, are used to find the best fitting model representing the simulated data points with goodness of fit analysis. Three features are proposed to identify the water pollutant with its size, peak absorption wavelength, relative amplitude, and a full width at half maximum. The device’s performance in detecting six different pollutants, silver, aluminum, copper, chromium, selenium, and ammonia, is evaluated. Sensitivity, a figure of merit, and a quality factor are used to evaluate the proposed sensor. The obtained maximum sensitivity is 11,300 nm/RIU, FOM of 740, and quality factor of 670.
Collapse
|
4
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
5
|
Sonne C, Alstrup AKO, Dietz R. Polar bear health in environmental science and translational medicine. ENVIRONMENT INTERNATIONAL 2018; 121:296. [PMID: 30227316 DOI: 10.1016/j.envint.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Christian Sonne
- Århus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Aage K Olsen Alstrup
- Århus University, Department of Nuclear Medicine and PET Center, Nørrebrogade 44, 10C, DK-8000 Århus C, Denmark
| | - Rune Dietz
- Århus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|