1
|
Desai S, Wilson J, Ji C, Sautner J, Prussia AJ, Demchuk E, Mumtaz MM, Ruiz P. The Role of Simulation Science in Public Health at the Agency for Toxic Substances and Disease Registry: An Overview and Analysis of the Last Decade. TOXICS 2024; 12:811. [PMID: 39590991 PMCID: PMC11598116 DOI: 10.3390/toxics12110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Environmental exposures are ubiquitous and play a significant, and sometimes understated, role in public health as they can lead to the development of various chronic and infectious diseases. In an ideal world, there would be sufficient experimental data to determine the health effects of exposure to priority environmental contaminants. However, this is not the case, as emerging chemicals are continuously added to this list, furthering the data gaps. Recently, simulation science has evolved and can provide appropriate solutions using a multitude of computational methods and tools. In its quest to protect communities across the country from environmental health threats, ATSDR employs a variety of simulation science tools such as Physiologically Based Pharmacokinetic (PBPK) modeling, Quantitative Structure-Activity Relationship (QSAR) modeling, and benchmark dose (BMD) modeling, among others. ATSDR's use of such tools has enabled the agency to evaluate exposures in a timely, efficient, and effective manner. ATSDR's work in simulation science has also had a notable impact beyond the agency, as evidenced by external researchers' widespread appraisal and adaptation of the agency's methodology. ATSDR continues to advance simulation science tools and their applications by collaborating with researchers within and outside the agency, including other federal/state agencies, NGOs, the private sector, and academia.
Collapse
Affiliation(s)
- Siddhi Desai
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Jewell Wilson
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Chao Ji
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Jason Sautner
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Andrew J. Prussia
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Eugene Demchuk
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - M. Moiz Mumtaz
- Office of Associate Director for Science, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| | - Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Vaccari L, Ranzi A, Canova C, Ghermandi G, Giannini S, Pitter G, Russo F, Stefanelli J, Teggi S, Vantini A, Jeddi M, Fletcher T, Colacci A. Reliability of toxicokinetic modelling for PFAS exposure assessment in contaminated water in northern Italy. Heliyon 2024; 10:e35288. [PMID: 39166031 PMCID: PMC11334853 DOI: 10.1016/j.heliyon.2024.e35288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Long-term contamination of tap water and groundwater by perfluoroalkyl and polyfluoroalkyl substances (PFASs) has been documented in the Veneto region of northern Italy. This study aimed to assess the exposure of individuals residing in the contaminated area and to test several toxicokinetic (TK) models of varying complexities to identify an efficient method for predicting perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in human serum using observed data.The ultimate goal is to provide public health officials with guidance on selecting the appropriate TK model for specific contexts, a reliable and rapid tool to support human bio-monitoring (HBM) studies. Methods Two simpler empirical TK models and a more complex multi-compartment physiologically based toxicokinetic (PBTK) model were compared with individual and aggregate data from an HBM study. In addition, the PBPK model was modified by adjusting input parameters and introducing new terms into the equations within the original model code. These modifications aimed to optimize the results compared to the original model, with some versions incorporating adjustments to account for the influence of menstruation in women. All models were evaluated to understand their strengths and weaknesses, providing guidance on the appropriate model to use according to specific scenarios. Results The results obtained from the tested models were quite similar, with significant improvements observed only in the modified models. Simpler models also provided satisfactory results in scenarios involving low PFOS serum concentrations and recent exposure cessation. In many cases, predictions demonstrated high accuracy, particularly at the aggregate level and for women. Conclusions These findings suggest that environmental protection agencies and health authorities may benefit from employing the tested models at the aggregate level as an initial step in HBM studies, rather than conducting more invasive and expensive screening campaigns.
Collapse
Affiliation(s)
- L. Vaccari
- Center for Environment, Prevention and Health, Emilia-Romagna Regional Agency for Prevention, Environment and Energy (Arpae), 40139, Bologna, Italy
| | - A. Ranzi
- Center for Environment, Prevention and Health, Emilia-Romagna Regional Agency for Prevention, Environment and Energy (Arpae), 40139, Bologna, Italy
| | - C. Canova
- Unit of Biostatistics, Epidemiology and Public Health-University of Padua, Padua, Italy
| | - G. Ghermandi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - S. Giannini
- Center for Environment, Prevention and Health, Emilia-Romagna Regional Agency for Prevention, Environment and Energy (Arpae), 40139, Bologna, Italy
| | - G. Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero, Veneto Region, Padua, Italy
| | - F. Russo
- Directorate of Prevention, Food Safety and Veterinary Public Health, Veneto Region, Venice, Italy
| | - J. Stefanelli
- Agency for Prevention and Protection of the Environment of the Veneto Region (ARPAV), 35121, Padova, Italy
| | - S. Teggi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - A. Vantini
- Agency for Prevention and Protection of the Environment of the Veneto Region (ARPAV), 35121, Padova, Italy
| | - M.Z. Jeddi
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - T. Fletcher
- London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - A. Colacci
- Center for Environment, Prevention and Health, Emilia-Romagna Regional Agency for Prevention, Environment and Energy (Arpae), 40139, Bologna, Italy
| |
Collapse
|
3
|
Su BD, Li XM, Huang ZW, Wang Y, Shao J, Xu YY, Shu LX, Li YB. Development and application of the physiologically-based toxicokinetic (PBTK) model for ochratoxin A (OTA) in rats and humans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116277. [PMID: 38604061 DOI: 10.1016/j.ecoenv.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Ochratoxin A (OTA) is a common fungal toxin frequently detected in food and human plasma samples. Currently, the physiologically based toxicokinetic (PBTK) model plays an active role in dose translation and can improve and enhance the risk assessment of toxins. In this study, the PBTK model of OTA in rats and humans was established based on knowledge of OTA-specific absorption, distribution, metabolism, and excretion (ADME) in order to better explain the disposition of OTA in humans and the discrepancies with other species. The models were calibrated and optimized using the available kinetic and toxicokinetic (TK) data, and independent test datasets were used for model evaluation. Subsequently, sensitivity analyses and population simulations were performed to characterize the extent to which variations in physiological and specific chemical parameters affected the model output. Finally, the constructed models were used for dose extrapolation of OTA, including the rat-to-human dose adjustment factor (DAF) and the human exposure conversion factor (ECF). The results showed that the unbound fraction (Fup) of OTA in plasma of rat and human was 0.02-0.04% and 0.13-4.21%, respectively. In vitro experiments, the maximum enzyme velocity (Vmax) and Michaelis-Menten constant (Km) of OTA in rat and human liver microsomes were 3.86 and 78.17 μg/g min-1, 0.46 and 4.108 μg/mL, respectively. The predicted results of the model were in good agreement with the observed data, and the models in rats and humans were verified. The PBTK model derived a DAF of 0.1081 between rats and humans, whereas the ECF was 2.03. The established PBTK model can be used to estimate short- or long-term OTA exposure levels in rats and humans, with the capacity for dose translation of OTA to provide the underlying data for risk assessment of OTA.
Collapse
Affiliation(s)
- Bu-Da Su
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Meng Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhi-Wei Huang
- Phase Ⅰ Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yan-Yan Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Le-Xin Shu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Giakoumi M, Stephanou PS, Kokkinidou D, Papastefanou C, Anayiotos A, Kapnisis K. A Predictive Toxicokinetic Model for Nickel Leaching from Vascular Stents. ACS Biomater Sci Eng 2024; 10:2534-2551. [PMID: 38525821 PMCID: PMC11005016 DOI: 10.1021/acsbiomaterials.3c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.
Collapse
Affiliation(s)
- Matheos Giakoumi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Pavlos S. Stephanou
- Department
of Chemical Engineering, Cyprus University
of Technology, Limassol 3036, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
5
|
Chen M, Du R, Zhang T, Li C, Bao W, Xin F, Hou S, Yang Q, Chen L, Wang Q, Zhu A. The Application of a Physiologically Based Toxicokinetic Model in Health Risk Assessment. TOXICS 2023; 11:874. [PMID: 37888724 PMCID: PMC10611306 DOI: 10.3390/toxics11100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Toxicokinetics plays a crucial role in the health risk assessments of xenobiotics. Classical compartmental models are limited in their ability to determine chemical concentrations in specific organs or tissues, particularly target organs or tissues, and their limited interspecific and exposure route extrapolation hinders satisfactory health risk assessment. In contrast, physiologically based toxicokinetic (PBTK) models quantitatively describe the absorption, distribution, metabolism, and excretion of chemicals across various exposure routes and doses in organisms, establishing correlations with toxic effects. Consequently, PBTK models serve as potent tools for extrapolation and provide a theoretical foundation for health risk assessment and management. This review outlines the construction and application of PBTK models in health risk assessment while analyzing their limitations and future perspectives.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Fan Xin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Li Chen
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
6
|
Giakoumi M, Stephanou PS, Kapnisis K, Anayiotos A. On the development of physiologically based toxicokinetic (PBTK) models for cardiovascular implants. Regul Toxicol Pharmacol 2023; 144:105489. [PMID: 37659713 DOI: 10.1016/j.yrtph.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Local and systemic contamination caused by metal ions leaching from medical device materials is a significant and continuing health problem. The increasing need for verification and validation, and the imposition of stringent government regulations to ensure that the products comply with the quality, safety, and performance standards, have led regulatory bodies worldwide to strongly recommend the use of modeling and simulation tools to support medical device submissions. A previously published physiologically based toxicokinetic (PBTK) model, is here expanded and enriched by an additional separate tissue compartment to better resemble normal physiology and by the introduction of time-dependent functions to describe all biokinetic parameters. The new model is exercised in conjunction with state-of-the-art probabilistic, Monte Carlo methodology to calculate the predictions' confidence intervals and incorporate variability associated with toxicological biodistribution studies. The quantitative consistency of the model-derived predictions is validated against reported data following the implantation of nickel-containing cardiovascular devices in humans and minipigs. Finally, a new methodology for compartmental toxicological risk assessment is presented that can be used for forward or reverse dosimetry. Our work is aimed at providing a computational tool to optimize the device design characteristics and safeguard that the substances released do not exceed permissible exposure limits.
Collapse
Affiliation(s)
- Matheos Giakoumi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Pavlos S Stephanou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| |
Collapse
|
7
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
8
|
Sweeney LM. Case study on the impact of the source of metabolism parameters in next generation physiologically based pharmacokinetic models: Implications for occupational exposures to trimethylbenzenes. Regul Toxicol Pharmacol 2022; 134:105238. [PMID: 35931234 DOI: 10.1016/j.yrtph.2022.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are a means of making important linkages between exposure assessment and in vitro toxicity. A key constraint on rapid application of PBPK models in risk assessment is traditional reliance on substance-specific in vivo toxicokinetic data to evaluate model quality. Bounding conditions, in silico, in vitro, and chemical read-across approaches have been proposed as alternative sources for metabolic clearance estimates. A case study to test consistency of predictive ability across these approaches was conducted using trimethylbenzenes (TMB) as prototype chemicals. Substantial concordance was found among TMB isomers with respect to accuracy (or inaccuracy) of approaches to estimating metabolism; for example, the bounding conditions never reproduced the human in vivo toxicokinetic data within two-fold. Using only approaches that gave acceptable prediction of in vivo toxicokinetics for the source compound (1,2,4-TMB) substantially narrowed the range of plausible internal doses for a given external dose for occupational, emergency response, and environmental/community health risk assessment scenarios for TMB isomers. Thus, risk assessments developed using the target compound models with a constrained subset of metabolism estimates (determined for source chemical models) can be used with greater confidence that internal dosimetry will be estimated with accuracy sufficient for the purpose at hand.
Collapse
Affiliation(s)
- Lisa M Sweeney
- UES, Inc, 4401 Dayton Xenia Road, Dayton, OH, 45432, USA(contractor assigned to the U.S. Air Force Research Laboratory 711th Human Performance Wing, Wright Patterson AFB, OH USA).
| |
Collapse
|
9
|
Rodríguez-Báez AS, Medellín-Garibay SE, Rodríguez-Aguilar M, Sagahón-Azúa J, Milán-Segoviaa RDC, Flores-Ramírez R. Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38645-38656. [PMID: 35080728 DOI: 10.1007/s11356-021-18197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.
Collapse
Affiliation(s)
- Ana Socorro Rodríguez-Báez
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Susanna Edith Medellín-Garibay
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico.
| | - Maribel Rodríguez-Aguilar
- Department of Basic Sciences, Universidad de Quintana Roo, MéxicoCenter for Applied Research in Environment and Health, CIACYT, Autonomous University of San Luis Potosi, San Luis Potosi, Quintana Roo, Mexico
| | - Julia Sagahón-Azúa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rosa Del Carmen Milán-Segoviaa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rogelio Flores-Ramírez
- Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, #550 Ave. Sierra Leona, C.P. 78210, San Luis Potosi, Mexico.
| |
Collapse
|
10
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
11
|
Quindroit P, Crépet A, Brochot C. Estimating human exposure to pyrethroids' mixtures from biomonitoring data using physiologically based pharmacokinetic modeling. ENVIRONMENTAL RESEARCH 2021; 192:110281. [PMID: 33031810 DOI: 10.1016/j.envres.2020.110281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Human biomonitoring data provide evidence to exposure of environmental chemicals. Physiologically based pharmacokinetic (PBPK) modelling together with an adequate exposure scenario allows to transpose measured concentrations of chemicals or their metabolites into exposure levels, as daily intakes. In France, high levels of urinary pyrethroids metabolites have been measured in populations. Our work aims at estimating the exposure of the French ENNS cohort to mixtures of four pyrethroids (deltamethrin, permethrin, cypermethrin, and cyfluthrin) from the urinary concentrations of five pyrethroids' metabolites commonly measured in biomonitoring studies. We developed a modelling approach based on a global toxicokinetic model that accounts for the cumulative exposure to pyrethroids as some of the metabolites can be shared by several parent compounds and for human inter-individual variability in metabolism. The median of the individual daily intakes was estimated to 8.1 ng/kg bw/day for permethrin, 17.7 ng/kg bw/day for cypermethrin, 20.4 ng/kg bw/day for cyfluthrin and 34.3 ng/kg bw/day for deltamethrin leading to similar weights for the pair permethrin and cypermethrin (36%), cyfluthrin (31%) and deltamethrin (33%) to the cumulative exposure. Accounting for human variability enabled to explain some of the variations in the metabolites' levels within the cohort. The cumulative exposure was then weighted by their toxicities towards three neurotoxic effects to calculate margins of exposure (MOE). Low MOE values were always associated with high measured concentrations of metabolites in urine and the lowest MOEs were observed for the autonomic division. No risks associated with reconstructed mixtures of pyrethroids were expected for the ENNS cohort. Our approach is an asset to analyse the biomarkers of exposure to pyrethroids simultaneously and could be easily adapted to any local or national specificities in pyrethroids' exposure or populations.
Collapse
Affiliation(s)
- Paul Quindroit
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Parc ALATA BP2, 60550, Verneuil en Halatte, France
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Céline Brochot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Parc ALATA BP2, 60550, Verneuil en Halatte, France.
| |
Collapse
|
12
|
Sabbioni G, Berset JD, Day BW. Is It Realistic to Propose Determination of a Lifetime Internal Exposome? Chem Res Toxicol 2020; 33:2010-2021. [PMID: 32672951 DOI: 10.1021/acs.chemrestox.0c00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomonitoring of xenobiotics has been performed for many years in occupational and environmental medicine. It has revealed hidden exposures and the exposure of workers could be reduced. Although most of the toxic effects of chemicals on humans were discovered in workers, the scientific community has more recently focused on environmental samples. In several countries, urinary and blood samples have been collected and analyzed for xenobiotics. Health, biochemical, and clinical parameters were measured in the biomonitoring program of the Unites States. The data were collected and evaluated as group values, comparing races, ages, and gender. The term exposome was created in order to relate chemical exposure to health effects together with the terms genome, proteome, and transcriptome. Internal exposures were mostly established with snapshot measurements, which can lead to an obvious misclassification of the individual exposures. Albumin and hemoglobin adducts of xenobiotics reflect the exposure of a larger time frame, up to 120 days. It is likely that only a small fraction of xenobiotics form such adducts. In addition, adduct analyses are more work intensive than the measurement of xenobiotics and metabolites in urine and/or blood. New technology, such as high-resolution mass spectrometry, will enable the discovery of new compounds that have been overlooked in the past, since over 300,000 chemicals are commercially available and most likely also present in the environment. Yet, quantification will be challenging, as it was for the older methods. At this stage, determination of a lifetime internal exposome is very unrealistic. Instead of an experimental approach with a large number of people, which is economically and scientifically not feasible, in silico methods should be developed further to predict exposure, toxicity, and potential health effects of mixtures. The computer models will help to focus internal exposure investigations on smaller groups of people and smaller number of chemicals.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jean-Daniel Berset
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| | - Billy W Day
- Medantox LLC, Pittsburgh, Pennsylvania 15241, United States.,ReNeuroGen LLC, Elm Grove, Wisconsin 53122, United States
| |
Collapse
|
13
|
Tzatzarakis M, Kokkinakis M, Renieri E, Goumenou M, Kavvalakis M, Vakonaki E, Chatzinikolaou A, Stivaktakis P, Tsakiris I, Rizos A, Tsatsakis A. Multiresidue analysis of insecticides and fungicides in apples from the Greek market. Applying an alternative approach for risk assessment. Food Chem Toxicol 2020; 140:111262. [DOI: 10.1016/j.fct.2020.111262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
|
14
|
Prokešová Š, Ghaibour K, Liška F, Klein P, Fenclová T, Štiavnická M, Hošek P, Žalmanová T, Hošková K, Řimnáčová H, Petr J, Králíčková M, Nevoral J. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod Toxicol 2019; 93:19-27. [PMID: 31881267 DOI: 10.1016/j.reprotox.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/30/2022]
Abstract
Bisphenol S (BPS) is widely used to replace the known endocrine disruptor BPA in various products. We evaluated the effect of acute in vivo BPS exposure on oocyte quality, simulating the oral route of exposure via oral gavage. Eight-week-old ICR female mice (N = 15 per experimental group) were exposed to vehicle or BPS1-BPS4 (0.001, 0.1, 10, and 100 ng BPS x g bw-1 day-1, respectively) for seven days. Oocytes were isolated and matured in vitro. We observed that BPS exposure increased aberrant spindle formation in mature oocytes and induced DNA damage. Moreover, BPS3 significantly increased the chromatin repressive marks 5-methyl cytosine (5meC) and H3K27me2 in immature oocytes. In the BPS2 group, the increase in 5meC occurred during oocyte maturation. Transcriptome analysis revealed differential expression of early embryonic development transcripts in BPS2-exposed oocytes. These findings indicate that the biological effect of BPS is non-monotonic, affecting oocyte quality even at concentrations that are orders of magnitude below those measured in humans.
Collapse
Affiliation(s)
- Šárka Prokešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic; Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Kamar Ghaibour
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Université Lille1, Sciences et Technologies, FR3688 CNRS, Villeneuve d´Ascq Cedex, France; Université de Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - František Liška
- 1(st) Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriama Štiavnická
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Žalmanová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Kristýna Hošková
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|