1
|
Cortés-Miranda J, Veliz D, Rojas-Hernández N, Rico C, Gutiérrez C, Vega-Retter C. Chemical-defensome and whole-transcriptome expression of the silverside fish Basilichthys microlepidotus in response to chronic pollution in the Maipo River basin, Central Chile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107159. [PMID: 39546967 DOI: 10.1016/j.aquatox.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Pollution is a major global concern affecting biodiversity, particularly of freshwater species. Populations have developed mechanisms to deal with pollution, such as the chemical defensome, which is a set of genes involved in maintaining internal stability. Pollution significantly affects the Maipo River basin in Chile. This area is home to the endemic silverside fish Basilichthys microlepidotus, whose populations are affected by pollution to different degrees. We assessed gene expression in the liver and gill of this species, focusing on whole-transcriptome and chemical-defensome levels, to identify both independent and shared mechanisms in response to pollution. The results showed that 14-18 genes were consistently expressed differently among populations in polluted areas. These genes were primarily involved in liver cell mitosis and in responses to organic chemicals and carcinogenic processes. Genes expressed differently in the gill were more abundant in immune system biological processes. All populations consistently downregulated chemical-defensome genes in the liver. In differentially expressed chemical-defensome genes, shared biological processes included virus response, cellular redox homeostasis and transport, organic cyclic compound response and DNA-templated transcription regulation. Studying chemical-defensome genes can help reveal common ways that pollution builds up over time, and examining the whole transcriptome can elucidate the context in which this response develops.
Collapse
Affiliation(s)
- Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago
| | - David Veliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago; Centro de Ecología y Manejo Sustentable de Islas Oceánicas, Coquimbo, Chile
| | - Noemí Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago
| | - Ciro Rico
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Río San Pedro, C. Republica Saharaui, 4, 11519 Puerto Real, Cádiz, España
| | - Catalina Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago
| | - Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago.
| |
Collapse
|
2
|
Anjos C, Duarte D, Fatsini E, Matias D, Cabrita E. Comparative transcriptome analysis reveals molecular damage associated with cryopreservation in Crassostrea angulata D-larvae rather than to cryoprotectant exposure. BMC Genomics 2024; 25:591. [PMID: 38867206 PMCID: PMC11167747 DOI: 10.1186/s12864-024-10473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.
Collapse
Affiliation(s)
- Catarina Anjos
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Daniel Duarte
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Domitília Matias
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal.
| |
Collapse
|
3
|
Ragesh S, Abdul Jaleel KU, Nikki R, Abdul Razaque MA, Muhamed Ashraf P, Ravikumar CN, Abdulaziz A, Dinesh Kumar PK. Environmental and ecological risk of microplastics in the surface waters and gastrointestinal tract of skipjack tuna (Katsuwonus pelamis) around the Lakshadweep Islands, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22715-22735. [PMID: 38411916 DOI: 10.1007/s11356-024-32564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
The presence of microplastics (MPs) in marine ecosystems is widespread and extensive. They have even reached the deepest parts of the ocean and polar regions. The number of articles on plastic pollution has increased in recent years, but few have investigated the MPs from oceanic islands which are biodiversity hotspots. We investigated the possible microplastic contamination their source and characteristics in surface waters off Kavaratti Island and in the gastrointestinal tract (GT) of skipjack tuna, Katsuwonus pelamis collected from Kavaratti Island of the Lakshadweep archipelago. A total of 424 MP particles were isolated from the surface water samples collected from off Kavaratti Island with an average abundance of 5 ± 1nos./L. A total of 117 MPs were recovered from the GT of skipjack tuna from 30 individual fishes. This points to a potential threat of MP contamination in seafood around the world since this species has a high value in local and international markets. Fiber and blue color were the most common microplastic morphotypes and colors encountered, respectively, both from surface water and GT of fish. Smaller MPs (0.01-1 mm) made up a greater portion of the recovered materials, and most of them were secondary MPs. Polyethylene and polypropylene were the most abundant polymers found in this study. The Pollution Load Index (1.3 ± 0.21) of the surface water and skipjack tuna (1 ± 0.7) indicates a minor ecological risk for the coral islands, while the Polymer Hazard Index highlights the ecological risk of polymers, even at low MP concentrations. This pioneer study sheds preliminary light on the abundance, properties, and environmental risks of MPs to this highly biodiverse ecosystem.
Collapse
Affiliation(s)
- Saraswathi Ragesh
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | | - Ramachandran Nikki
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | - Mannayath Abdulazeez Abdul Razaque
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | | | | | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | |
Collapse
|
4
|
Wang X, Li P, Cao X, Liu B, He S, Cao Z, Xing S, Liu L, Li ZH. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120161. [PMID: 36100119 DOI: 10.1016/j.envpol.2022.120161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Stuart KC, Sherwin WB, Austin JJ, Bateson M, Eens M, Brandley MC, Rollins LA. Historical museum samples enable the examination of divergent and parallel evolution during invasion. Mol Ecol 2022; 31:1836-1852. [PMID: 35038768 PMCID: PMC9305591 DOI: 10.1111/mec.16353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
During the Anthropocene, Earth has experienced unprecedented habitat loss, native species decline and global climate change. Concurrently, greater globalization is facilitating species movement, increasing the likelihood of alien species establishment and propagation. There is a great need to understand what influences a species' ability to persist or perish within a new or changing environment. Examining genes that may be associated with a species' invasion success or persistence informs invasive species management, assists with native species preservation and sheds light on important evolutionary mechanisms that occur in novel environments. This approach can be aided by coupling spatial and temporal investigations of evolutionary processes. Here we use the common starling, Sturnus vulgaris, to identify parallel and divergent evolutionary change between contemporary native and invasive range samples and their common ancestral population. To do this, we use reduced-representation sequencing of native samples collected recently in northwestern Europe and invasive samples from Australia, together with museum specimens sampled in the UK during the mid-19th century. We found evidence of parallel selection on both continents, possibly resulting from common global selective forces such as exposure to pollutants. We also identified divergent selection in these populations, which might be related to adaptive changes in response to the novel environment encountered in the introduced Australian range. Interestingly, signatures of selection are equally as common within both invasive and native range contemporary samples. Our results demonstrate the value of including historical samples in genetic studies of invasion and highlight the ongoing and occasionally parallel role of adaptation in both native and invasive ranges.
Collapse
Affiliation(s)
- Katarina C. Stuart
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - William B. Sherwin
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - Jeremy J. Austin
- School of Biological SciencesAustralian Centre for Ancient DNA (ACAD)University of AdelaideAdelaideSouth AustraliaAustralia
| | - Melissa Bateson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology GroupDepartment of BiologyUniversity of AntwerpWilrijkBelgium
| | - Matthew C. Brandley
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPennsylvaniaUSA
| | - Lee A. Rollins
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Wei L, Wang D, Aierken R, Wu F, Dai Y, Wang X, Fang C, Zhao L, Zhen Y. The prevalence and potential implications of microplastic contamination in marine fishes from Xiamen Bay, China. MARINE POLLUTION BULLETIN 2022; 174:113306. [PMID: 35090291 DOI: 10.1016/j.marpolbul.2021.113306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The wide presence of microplastics (MPs) in the ocean leads their exposure on marine fish. MP contamination was reported for the gastrointestinal tracts and gills of 117 marine fishes attributed to nine species from Xiamen Bay, a special economic zone in China. Among species, MP abundance ranged from 1.07 items individual-1 to 8.00 items individual -1. Fibers dominated MP shapes, accounting for 59.03% of all MPs. Polymer composition was dominated by polyamide (26.97%) and rayon (17.56%). MPs were most commonly (55.22%) transparent, and most (77.61%) were < 1 mm in size. Our report represents the first of MP contamination in wild marine fish from Xiamen Bay, which we determine to be at an intermediate to slightly higher level compared with levels reported elsewhere, and provides further insights into potential risks of MPs pose to fish and human health.
Collapse
Affiliation(s)
- Lili Wei
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Daling Wang
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Reyilamu Aierken
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fuxing Wu
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yufei Dai
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xianyan Wang
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Liyuan Zhao
- Laboratory of Marine Biology and Ecology, Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|