1
|
Cabodevilla X, Ortiz-Santaliestra ME, Fernández-Tizón M, Zurdo J, Madeira MJ, Giralt D, Sardà-Palomera F, Fernández-Benéitez MJ, Mougeot F. Dietary DNA metabarcoding reveals a trophic niche partitioning among sympatric Iberian sandgrouses and bustards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172989. [PMID: 38714259 DOI: 10.1016/j.scitotenv.2024.172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
The study of trophic niche partitioning is of great importance for understanding community structure and species coexistence, particularly if these are threatened. Here DNA metabarcoding was used to assess the diet of four threatened steppe bird species (two bustards and two sandgrouses), with the aim of better understanding their dietary requirements, trophic interactions, and potential threats. The results showed seasonal and interspecific differences in their plant diet, with greater importance of cultivated plants during autumn and winter (around 50 % of their diet) than spring. Plants of the genus Convolvulus and of the family Brassicaceae were frequently consumed by all species. In spring, poppies (Papaver spp.) were a considerable part of their diet, and could be used as a source of carotenoids or for their anti-parasitic properties. Furthermore, results evidenced a trophic niche partitioning among species, with a marked segregation between bustard species and, to a lesser extent, between sandgrouse species. Diet similarity was generally higher between species from different orders that occur in mixed-species flocks (bustard - sandgrouse) than between species of the same order. This partitioning was probably related to a stratification in habitat use rather than to specialisation and might prevent competition to some extent. However, the homogenization of trophic resources resulting from agricultural intensification could pose an important threat, particularly during autumn, when weeds are scarcer and the most abundant trophic resource are sown seeds, which are often treated with pesticides.
Collapse
Affiliation(s)
- Xabier Cabodevilla
- Conservation Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain; Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Mario Fernández-Tizón
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Julia Zurdo
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| | - María J Madeira
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Alava, Spain
| | - David Giralt
- Conservation Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain
| | - Francesc Sardà-Palomera
- Conservation Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain
| | - María J Fernández-Benéitez
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
2
|
Das S, Samal A, Ojha PK. Chemometrics-driven prediction and prioritization of diverse pesticides on chickens for addressing hazardous effects on public health. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134326. [PMID: 38636230 DOI: 10.1016/j.jhazmat.2024.134326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The extensive use of various pesticides in the agriculture field badly affects both chickens and humans, primarily through residues in food products and environmental exposure. This study offers the first quantitative structure-toxicity relationship (QSTR) and quantitative read-across-structure toxicity relationship (q-RASTR) models encompassing the LOEL and NOEL endpoints for acute toxicity in chicken, a widely consumed protein. The study's significance lies in the direct link between chemical toxicity in chicken, human intake, and environmental damage. Both the QSTR and the similarity-based read-across algorithms are applied concurrently to improve the predictability of the models. The q-RASTR models were generated by combining read-across derived similarity and error-based parameters, alongside structural and physicochemical descriptors. Machine Learning approaches (SVM and RR) were also employed with the optimization of relevant hyperparameters based on the cross-validation approach, and the final test set prediction results were compared. The PLS-based q-RASTR models for NOEL and LOEL endpoints showed good statistical performance, as traced from the external validation metrics Q2F1: 0.762-0.844; Q2F2: 0.759-0.831 and MAEtest: 0.195-0.214. The developed models were further used to screen the Pesticide Properties DataBase (PPDB) for potential toxicants in chickens. Thus, established models can address eco-toxicological data gaps and development of novel and safe eco-friendly pesticides.
Collapse
Affiliation(s)
- Shubha Das
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhisek Samal
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
4
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
5
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33026-1. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
6
|
Bellot P, Bichet C, Brischoux F, Fritsch C, Hope SF, Quesnot A, Angelier F. Experimental investigation of the effect of tebuconazole on three biomarkers of innate immunity in the house sparrow (Passer domesticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:119-129. [PMID: 38244180 DOI: 10.1007/s10646-024-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Triazoles are among the most widely used fungicides in the world due to their efficacy against fungal crop diseases and their broad spectrum of action. Intensive use of triazoles has resulted in residual contamination in different compartments of agroecosystems and exposes non-target species to potential sublethal effects. Triazoles are known to be immunomodulators in medicine and therapeutic treatments, but very little data is available on their potential effect on immune parameters of non-target vertebrate species living in agroecosystems. In this study, we experimentally examined the impact of tebuconazole on three immune biomarkers (haemagglutination titre (HA), haemolysis titre (HL), and haptoglobin concentration (Hp)), as well as on the body condition of house sparrows (Passer domesticus). Our results suggest that tebuconazole had very little, if any, effect on the studied immune parameters. However, further studies are needed to better assess the effect of tebuconazole on bird immunity because (1) experimental individuals were kept under optimal conditions and the impact of tebuconazole on immunity may occur under suboptimal conditions, (2) only one concentration of tebuconazole was tested and its effect could be dose-dependent and (3) other complementary immunological biomarkers should be studied, given the complexity of the vertebrate immune system. Current knowledge on the potential effects of triazoles on the immunity of wild farmland vertebrates is still largely insufficient. Further physiological and immune studies should be conducted to better understand the effect of triazole fungicides on farmland birds.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Alice Quesnot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
7
|
Fernández-Vizcaíno E, Mougeot F, Cabodevilla X, Fernández-Tizón M, Mateo R, Madeira MJ, Ortiz-Santaliestra ME. Diet and Spatial Ecology Influence Red-Legged Partridge Exposure to Pesticides Used as Seed Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14861-14870. [PMID: 37747849 PMCID: PMC10569034 DOI: 10.1021/acs.est.3c03905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Seed treatment with pesticides is an extended agricultural practice with a high risk to granivorous birds that consume those seeds. To characterize that risk, it is necessary to understand the ecological factors that determine the exposure chances of birds to treated seeds. We investigated how pesticide uptake by red-legged partridges was related to cultivated plant ingestion and to the use of recently sown fields. We analyzed pesticide residues in 144 fecal samples from 32 flocks and determined the plant diet composition using DNA metabarcoding. Habitat use was studied through the monitoring of 15 GPS-tagged partridges. We confirmed, through the analysis of seeds, that >80% of cereal fields from the area had seeds treated with triazole fungicides. Tebuconazole was detected in 16.6% of partridges' feces. During the sowing season, cultivated plants accounted for half of the plant diet, but no association was found between cultivated plant consumption and pesticide intake. GPS tracking revealed that tebuconazole was detected in feces when partridges had recently used sown fields, whereas nonexposed partridges showed no overlap with recently sown areas. Our results highlight the need to incorporate field ecology into the characterization of pesticide exposure to improve the efficacy of environmental risk assessment.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - François Mougeot
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Xabier Cabodevilla
- Conservation
Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia
(CTFC), km 2, Solsona 25280, Spain
- Terrestrial
Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Calle Darwin 2, Madrid 28049, Spain
| | - Mario Fernández-Tizón
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Rafael Mateo
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - María J. Madeira
- Department
of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Alava, Spain
| | - Manuel E. Ortiz-Santaliestra
- Instituto
de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real 13005, Spain
| |
Collapse
|
8
|
Bellot P, Brischoux F, Budzinski H, Dupont SM, Fritsch C, Hope SF, Michaud B, Pallud M, Parenteau C, Prouteau L, Rocchi S, Angelier F. Chronic exposure to tebuconazole alters thyroid hormones and plumage quality in house sparrows (Passer domesticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28259-5. [PMID: 37365357 DOI: 10.1007/s11356-023-28259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Triazoles belong to a family of fungicides that are ubiquitous in agroecosystems due to their widespread use in crops. Despite their efficiency in controlling fungal diseases, triazoles are also suspected to affect non-target vertebrate species through the disruption of key physiological mechanisms. Most studies so far have focused on aquatic animal models, and the potential impact of triazoles on terrestrial vertebrates has been overlooked despite their relevance as sentinel species of contaminated agroecosystems. Here, we examined the impact of tebuconazole on the thyroid endocrine axis, associated phenotypic traits (plumage quality and body condition) and sperm quality in wild-caught house sparrows (Passer domesticus). We experimentally exposed house sparrows to realistic concentrations of tebuconazole under controlled conditions and tested the impact of this exposure on the levels of thyroid hormones (T3 and T4), feather quality (size and density), body condition and sperm morphology. We found that exposure to tebuconazole caused a significant decrease in T4 levels, suggesting that this azole affects the thyroid endocrine axis, although T3 levels did not differ between control and exposed sparrows. Importantly, we also found that exposed females had an altered plumage structure (larger but less dense feathers) relative to control females. The impact of tebuconazole on body condition was dependent on the duration of exposure and the sex of individuals. Finally, we did not show any effect of exposure to tebuconazole on sperm morphology. Our study demonstrates for the first time that exposure to tebuconazole can alter the thyroid axis of wild birds, impact their plumage quality and potentially affect their body condition. Further endocrine and transcriptomic studies are now needed not only to understand the underlying mechanistic effects of tebuconazole on these variables, but also to further investigate their ultimate consequences on performance (i.e. reproduction and survival).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Hélène Budzinski
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Sophie M Dupont
- BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, 97233, Schoelcher, Martinique, France
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Louise Prouteau
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
9
|
Fernández-Vizcaíno E, Mougeot F, Mateo R, Camarero PR, Alcaide V, Ortiz-Santaliestra ME. A non-invasive method to monitor farmland bird exposure to triazole fungicides. CHEMOSPHERE 2023; 325:138316. [PMID: 36893863 DOI: 10.1016/j.chemosphere.2023.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The treatment of seeds with pesticides is an extended practice in current agriculture. There is a high risk of exposure in granivorous birds, such as the red-legged partridge (Alectoris rufa), that can consume those seeds remaining on the surface during sowing. Fungicide exposure could in turn affect bird reproductive capacity. To better understand to what extent triazole fungicides are a threat to granivorous birds, we need an easy and reliable method to quantify field exposure. In this study, we tested a novel non-invasive method to detect the presence of triazole fungicide residues in farmland bird faeces. We experimentally exposed captive red-legged partridges to validate the method, and then applied it in a real scenario to assess exposure of wild partridges. We exposed adult partridges to seeds treated with two formulations containing triazole fungicides as active ingredients: Vincit®Minima (flutriafol 2.5%) and Raxil®Plus (prothioconazole 25% and tebuconazole 15%). We collected two types of faeces (caecal and rectal samples) immediately after exposure and 7 days later and quantified the concentrations of the three triazoles and their common metabolite (1,2,4-triazole). The three active ingredients and 1,2,4-triazole were only detected in faeces collected immediately after exposure. Triazole fungicide detection rates in rectal stool were 28.6%, 73.3% and 80% for flutriafol, prothioconazole and tebuconazole, respectively. In caecal samples, detection rates were 40%, 93.3% and 33.3%, respectively. 1,2,4-triazole was detected in 53% of rectal samples. For an applied use of the method in the field, we collected 43 faecal samples from wild red-legged partridges during autumn cereal seed sowing and found detectable levels of tebuconazole in 18.6% of the analysed wild partridges. The results of the experiment were then used to estimate actual exposure levels from this prevalence value found in wild birds. Our study shows that faecal analysis can be a useful tool to assess farmland bird exposure to triazole fungicides, when samples are fresh and the method has been validated for the detection of target molecules.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Vicente Alcaide
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Agroambiental El Chaparrillo JCCM. Carretera de Porzuna S/n, 13071, Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| |
Collapse
|
10
|
Tassin de Montaigu C, Goulson D. Habitat quality, urbanisation & pesticides influence bird abundance and richness in gardens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161916. [PMID: 36736389 DOI: 10.1016/j.scitotenv.2023.161916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Gardens are regularly portrayed as green oases, refuges for wildlife that has been displaced from the countryside by intensive farming practices which have reduced habitat availability. Pesticides are also commonly used in urban areas, but few studies have investigated their impacts. In this study, we explored how bird richness and abundance in gardens across the UK are influenced by habitat quality, urbanisation level and pesticide practices. To achieve this, we collaborated with the British Trust for Ornithology (BTO) which runs Garden Birdwatch, a citizen-science-based garden bird recording scheme. Participants in the study were asked to complete a questionnaire about their pesticide practice. From the 615 gardens that provided useful data, we found that 32.2 % applied pesticides in their gardens and that glyphosate comprised 53.3 % of these applications. We found that bird abundance and species richness was lower in suburban compared to rural gardens but positively influenced by measures of garden quality and by surrounding habitat quality. We show that there was an interaction between the habitat quality of the surrounding area and pesticide use: negative effects of pesticides on species richness were more pronounced in gardens in areas of high habitat quality compared to those surrounded by poor habitat. We found that pesticide use, and particularly glyphosate and metaldehyde, negatively predicted the abundance of house sparrows, a fast-declining bird species. The average house sparrow abundance was 12.1 % lower in gardens applying any pesticide, 24.9 % lower with glyphosate, and 38.6 % lower with metaldehyde. Overall, our study shows that garden bird abundance and richness is strongly influenced by both extrinsic and intrinsic factors, and suggests that garden management, particularly regarding pesticide use, has a significant effect on bird life.
Collapse
Affiliation(s)
- Cannelle Tassin de Montaigu
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom.
| | - Dave Goulson
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom
| |
Collapse
|
11
|
Serra L, Bourdon G, Estienne A, Fréville M, Ramé C, Chevaleyre C, Didier P, Chahnamian M, Ganier P, Pinault F, Froment P, Dupont J. Triazole pesticides exposure impaired steroidogenesis associated to an increase in AHR and CAR expression in testis and altered sperm parameters in chicken. Toxicol Rep 2023; 10:409-427. [PMID: 37025555 PMCID: PMC10070196 DOI: 10.1016/j.toxrep.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Since several decades, we observe the decline of various bird populations that could be partly linked to the agricultural intensification and the use of large amount of pesticides. Even if triazoles compounds are the most widely used fungicides, their effects on the reproductive parameters in birds are not clearly known. In the present study, we investigated the in vitro effects of 8 triazoles compounds alone (propiconazole (PP, from 0 to 10 µM), prothioconazole (PT), epoxiconazole (Epox), tetraconazole (TT), tebuconazole (TB), difenoconazole (Dif), cyproconazole (Cypro), metconazole (MC) (from 0 to 1 mM)) on the male chicken reproductive functions by using testis explants, primary Sertoli cells and sperm samples. In testis, all triazoles at the higher concentrations for 48 h inhibited lactate and testosterone secretion mostly in association with reduced expression of HSD3B and/or STAR mRNA levels. These data were also associated with increased expression of the nuclear receptors Aryl Hydrocarbon Receptor (AHR) and Constitutive Androstane Receptor (CAR) mRNA levels in testis and for all triazoles except for PP a reduction in Sertoli cell viability. When focusing on the sperm parameters, we demonstrated that most of the triazoles (MC, Epox, Dif, TB, TT and Cypro) at 0.1 or 1 mM for either 2, 12 or 24 min of exposure decreased sperm motility and velocity and increased the percentage of spermatozoa abnormal morphology. At the opposite, PP increased sperm motility in a dose dependent manner after 2 min of exposure whereas no significant effect was observed in response to PT whatever the dose and the time of exposure. Moreover, these effects were associated with an increase in the production of reactive oxygen species in spermatozoa. Taken together, most of the triazoles compounds impair testis steroidogenesis and semen parameters potentially through an increase in AHR and CAR expression and in oxidative stress, respectively. Data Availability Statement All the data will be available.
Collapse
|
12
|
Angelier F, Prouteau L, Brischoux F, Chastel O, Devier MH, Le Menach K, Martin S, Mohring B, Pardon P, Budzinski H. High contamination of a sentinel vertebrate species by azoles in vineyards: a study of common blackbirds (Turdus merula) in multiple habitats in western France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120655. [PMID: 36410596 DOI: 10.1016/j.envpol.2022.120655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Azoles represent the most used family of organic fungicides worldwide and they are used in agriculture to circumvent the detrimental impact of fungi on yields. Although it is known that these triazoles can contaminate the air, the soil, and the water, field data are currently and dramatically lacking to assess if, and to what extent, the use of triazoles could contaminate non-target wild vertebrate species, notably in agroecosystems. In this study, we aimed to document for the first time the degree of blood contamination of a generalist wild bird species by multiple azoles which are used for plant protection and fungi pest control in various habitats. We deployed passive air samplers and captured 118 Common blackbirds (Turdus merula) in an agroecosystem (vineyard), a protected forest, and a city in western France. We collected blood and analyzed the plasma levels of 13 triazoles and 2 imidazoles. We found that a significant percentage of blackbirds living in vineyards have extremely high plasma levels of multiple azoles (means (pg.g-1); tebuconazole: 149.23, difenoconazole: 44.27, fenbuconazole: 239.38, tetraconazole: 1194.16), while contamination was very limited in the blackbirds from the protected forest and absent in urban blackbirds. Interestingly, we also report that the contamination of blackbirds living in vineyard was especially high at the end of Spring and the beginning of Summer and this matches perfectly with the results from the passive air samplers (i.e., high levels of azoles in the air of vineyards during June and July). However, we did not find any correlation between the levels of plasma contamination by azoles and two simple integrative biomarkers of health (feather density and body condition) in this sentinel species. Future experimental studies are now needed to assess the potential sub-lethal effects of such levels of contamination on the physiology of non-target vertebrate species.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France.
| | - Louise Prouteau
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | - Olivier Chastel
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France
| | | | - Karyn Le Menach
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Stéphan Martin
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Bertille Mohring
- Centre D'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, Villiers en Bois, 79360, France; Environmental and Marine Biology, Åbo Akademi University, FI-20250, Turku, Finland
| | - Patrick Pardon
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Hélène Budzinski
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
13
|
Bellot P, Brischoux F, Fritsch C, Goutte A, Alliot F, Rocchi S, Angelier F. Evidence of environmental transfer of tebuconazole to the eggs in the house sparrow (Passer domesticus): An experimental study. CHEMOSPHERE 2022; 308:136469. [PMID: 36116623 DOI: 10.1016/j.chemosphere.2022.136469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Many farmland birds spend a significant part of their life cycle in agroecosystems, which may chronically expose them to pesticides. We experimentally tested whether exposure to environmental concentrations of tebuconazole could induce a contamination of the eggs in an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for seven months to tebuconazole through drinking water. Eggs were opportunistically collected for the determination of tebuconazole concentration by Liquid Chromatography coupled to tandem Mass Spectrometry in eggs. We found that eggs from exposed parents all contained tebuconazole with a mean concentration of 1.52 ng g-1 dry weight. In eggs from control parents, the tebuconazole concentration was below the limit of quantification (0.23 ng g-1 dry weight) for 11 out of 13 eggs. Thus, our study demonstrates for the first time that environmental exposure of female birds to tebuconazole can translate into egg contamination by this fungicide.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Aurélie Goutte
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études, PSL Research University, UMR 7619 METIS, Sorbonne Université- CNRS, Paris, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté, 25000, Besançon, France; Service de Parasitologie-Mycologie, CHU Jean Minjoz, 25000, Besançon, France
| | - Frédéric Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
14
|
Gaffard A, Pays O, Monceau K, Teixeira M, Bretagnolle V, Moreau J. Feeding on grains containing pesticide residues is detrimental to offspring development through parental effects in grey partridge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120005. [PMID: 35998772 DOI: 10.1016/j.envpol.2022.120005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Numerous toxicological studies have shown that ingestion of pesticides can induce physiological stress in breeding birds, with adverse consequences on egg laying parameters and offspring quality through parental effects. However, previous studies do not mimic current levels of pesticide residues in typical landscapes, and they do not consider potential cocktail effects of pesticides as they occur in the wild. Herein, we explored whether realistic pesticide exposure affected reproduction parameters and offspring condition through parental effects in Grey partridge. We fed 24 breeding pairs with either seeds from conventional agriculture crops treated with various pesticides during cropping, or organic grains without pesticide residues as controls. The conventional and organic grain diets mimicked food options potentially encountered by wild birds in the field. The results showed that ingesting low pesticide doses over a long period had consequences on reproduction and offspring quality without altering mortality in parents or chicks. Compared with organic pairs, conventional pairs yielded smaller chicks at hatching that had a lower body mass index at 24 days old. Additionally, these chicks displayed lower haematocrit when body mass index was higher. Therefore, ingestion of conventional grains by parents resulted in chronic exposure to pesticide residues, even at low doses, and this had detrimental consequences on offspring. These results demonstrate a sublethal effect of pesticide residues through parental effects. The consequences of parental exposure on chicks might partly explain the decline in wild Grey partridge populations, which raises questions for avian conservation and demography if current agrosystem approaches are continued.
Collapse
Affiliation(s)
- Agathe Gaffard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Olivier Pays
- Univ Angers, BIODIVAG, 49000, Angers, France; REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George Campus, Madiba Drive 6531, George, South Africa
| | - Karine Monceau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| | - Jérôme Moreau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France; UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
15
|
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F. Experimental Exposure to Tebuconazole Affects Metabolism and Body Condition in a Passerine Bird, the House Sparrow (Passer domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2500-2511. [PMID: 35899983 DOI: 10.1002/etc.5446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Triazoles are suspected to have an impact on nontarget species due to their interactions with nonfungal sterol synthesis, and wild birds are likely to be contaminated by triazole fungicides because many of them live in agroecosystems. We experimentally tested whether exposure to environmental concentrations of a triazole could alter key integrative traits (metabolic rates and body condition) of an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for 7 continuous months to tebuconazole through drinking water. The metabolic rates of exposed and control sparrows were then measured at two different temperatures (12 °C and 25 °C), which correspond, respectively, to the thermoregulation and thermoneutrality temperatures of this species. We found that exposed sparrows had lower resting metabolic rates (i.e., measured at thermoneutrality, 25 °C) than controls. However, the thermoregulatory metabolic rates (i.e., measured at 12 °C) did not differ between exposed and control sparrows. Although the body mass and condition were not measured at the beginning of the exposure, sparrows at the time of the metabolic measurements 7 months after the onset of such exposure had a higher body condition than controls, supporting further the idea that tebuconazole affects metabolic functions. Our study demonstrates for the first time that the use of tebuconazole can alter metabolism and could potentially lead to adverse effects in birds. Environ Toxicol Chem 2022;41:2500-2511. © 2022 SETAC.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Sophie Marie Dupont
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Hélène Budzinski
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Louise Prouteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
- Service de Parasitologie-Mycologie, CHU Jean Minjoz, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| |
Collapse
|
16
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
17
|
Tian S, Yan H, Meng Z, Jia M, Sun W, Huang S, Wang Y, Zhou Z, Diao J, Zhu W. Prothioconazole and prothioconazole-desthio induced different hepatotoxicities via interfering with glycolipid metabolism in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104983. [PMID: 34955176 DOI: 10.1016/j.pestbp.2021.104983] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Prothioconazole (PTA), a new triazole fungicide, has been widely used worldwide. A recent study has confirmed that PTA and its main metabolite prothioconazole-desthio (dPTA) interfere with the liver metabolism in reptiles. However, little is known about liver toxicity of these two pollutants in mammals. Here, female mice were orally exposed to PTA (1.5 mg/kg body weight/day) and dPTA (1.5 mg/kg body weight/day) for 30 days. Additionally, growth phenotype and indexes related to serum and liver function were examined. Using metabolomics and gene expression analysis, PTA- and dPTA-induced hepatotoxicity was studied to clarify its potential underlying mechanism of action. Together, the results indicated that PTA and dPTA exposure caused changes in growth phenotypes, including elevated blood glucose levels, triglyceride accumulation, and damage of liver function. Additionally, exposure to PTA and dPTA caused changes in genes and metabolites related to glycolipid metabolism in female mice, thereby interfering with the pyruvate metabolism and glycolysis/gluconeogenesis pathways, ultimately leading to hepatic metabolism disorders. In particular, the effect of dPTA on hepatotoxicity has been proven to be more significant than that of PTA. Thus, these findings help us understand the underlying mechanism of action of PTA and dPTA exposure-induced hepatotoxicity in mammals and possibly humans.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hang Yan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Fernández-Vizcaíno E, Ortiz-Santaliestra ME, Fernández-Tizón M, Mateo R, Camarero PR, Mougeot F. Bird exposure to fungicides through the consumption of treated seeds: A study of wild red-legged partridges in central Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118335. [PMID: 34637835 DOI: 10.1016/j.envpol.2021.118335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sown seeds are a key component of many farmland birds' diets due to natural food shortages in autumn and winter. Because these seeds are often treated with pesticides, their ingestion by birds can result in toxic effects. For risk assessment, data on treated seed toxicity should be combined with information about exposure risk for wild birds and the factors that modulate it. We characterized the exposure of red-legged partridges to pesticide-treated seeds through the analysis of digestive contents of birds shot by hunters (n = 194) in an agricultural region in central Spain. We measured the contribution of sown seeds to the partridges' diet and how it related to pesticide exposure. Moreover, we evaluated the influence of landscape composition on the intake of sown seeds and pesticides by partridges. During peak sowing time, seeds constituted half (50.7%) of the fresh biomass ingested by partridges, which consumed mostly winter cereal seeds (42.3% of biomass). Residues of seven fungicides and one insecticide (active ingredients) were detected in 33.0% of birds. The presence of pesticides in digestive contents was linked to the ingestion of cereal sown seeds. Moreover, dietary exposure of birds to pesticides was modulated by landscape characteristics, being lower in areas with heterogeneous landscapes, greater habitat mosaic and more natural vegetation. The estimated dietary intake of pesticides resulting from our field observations, in combination with experimental data on pesticide toxicity, raise concerns about the risks that pesticide-treated cereal seeds pose to granivorous bird populations. Our results highlight the importance of farming landscape composition and diversification, which should be considered as a priority in the agricultural policy to mitigate pesticide risks to farmland birds through the consumption of treated seeds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain.
| | | | - Mario Fernández-Tizón
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM,13005, Ciudad Real. Spain
| |
Collapse
|
19
|
Cabodevilla X, Estrada A, Mougeot F, Jimenez J, Arroyo B. Farmland composition and farming practices explain spatio-temporal variations in red-legged partridge density in central Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149406. [PMID: 34426345 DOI: 10.1016/j.scitotenv.2021.149406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Many farmland bird populations are declining, and their negative trends are often associated with changes in land-use or farming practices, including the use of agrochemicals. The red-legged partridge (RLP) is a Mediterranean farmland game species of high socio-economic importance whose populations are thought to have declined sharply since the mid-20th century associated with farmland changes. However, no large-scale studies have tested whether abundance or trends of RLP are related to farmland composition or management. We used hierarchical distance sampling models to estimate RLP abundance in 2010 in central Spain (Castilla-La Mancha), a main European population stronghold of this species. We studied associations between RLP density and land-uses (including variation in management: irrigated crops or organic farming). We also assessed regional abundance variation over seven years (2010-2017) and its relationship with changes in land-use. Our results show that RLP abundance increased with the availability of natural vegetation and traditional rain-fed vineyards, but decreased with increasing proportions of tree crops and irrigated vineyards; the latter association was less pronounced in areas sensitive to nitrate contamination in water, where the amount of fertilizers applied in farmland and use of certain farming practices is more strictly regulated. These results support the idea that increases in intensive vineyards are detrimental to the RLP. We also report a strong population decline of RLP in the region, with a 51% abundance reduction in seven years. This decline was steeper in areas where more natural vegetation had been lost and where ecological tree crops had increased. Overall, our results indicate that changes in land-use (type of crop, or the destruction of natural vegetation in farmland) and farming practices (e.g. use of irrigation in certain crops, use of nitrates) have important impacts on this farmland bird, affecting both spatial distribution and population dynamics.
Collapse
Affiliation(s)
- Xabier Cabodevilla
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Alava, Spain; Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Alba Estrada
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain; Biogeography, Diversity and Conservation Lab. Department of Animal Biology, Universidad de Málaga, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José Jimenez
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Beatriz Arroyo
- Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
20
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Birds feeding on tebuconazole treated seeds have reduced breeding output. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116292. [PMID: 33388683 DOI: 10.1016/j.envpol.2020.116292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
21
|
Ortiz-Santaliestra ME, Alcaide V, Camarero PR, Mateo R, Mougeot F. Egg Overspray with Herbicides and Fungicides Reduces Survival of Red-Legged Partridge Chicks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12402-12411. [PMID: 32911930 DOI: 10.1021/acs.est.0c04203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Within the environmental risk assessment conducted for pesticide registration in the European Union (EU), avian reproductive toxicity is characterized after exposing adults. However, eggs of ground-nesting species can be exposed when pesticide applications occur during laying or incubation. We simulated environmentally realistic exposure of red-legged partridge (Alectoris rufa) eggs to an herbicide (2,4-D) and a fungicide (tebuconazole) applied to winter cereal crops during the breeding season of most farmland birds. We analyzed the effects on hatching success, offspring survival, and physiology. Exposure by overspray led to greater pesticide accumulation in the eggshell or content than exposure through contact with treated soil (3.1-13.7 times higher, depending on the pesticide and target sample). Egg overspray with tebuconazole significantly increased chick mortality, which was 26% higher than that of controls. 2,4-D caused a similar but a close to significant increase (chick mortality 24% higher than controls). Exposure to either pesticide through contact with treated soils did not affect chick survival but altered some biochemical parameters posthatching. Our experiment shows that egg spraying with pesticides should be considered as a relevant exposure scenario in risk assessment procedures, given its potential to affect the reproductive success of ground-nesting farmland birds.
Collapse
Affiliation(s)
- Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Vicente Alcaide
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla la Mancha (IRIAF) JCCM, Centro de Investigación Agroambiental El Chaparrillo, Carretera de Porzuna s/n, 13071 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|