1
|
Li W, Chen Z, Xu W, Gao Y, Liu Z, Li Q, Dai L. Prevalence of congenital cryptorchidism in China: A nationwide population-based surveillance study, 2007-2021. Andrology 2024. [PMID: 38958226 DOI: 10.1111/andr.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Despite cryptorchidism being a common genital abnormality in male newborns with significant prevalence variations globally, there is a notable scarcity of epidemiological data on this condition in China. OBJECTIVE This study aimed to delineate the prevalence pattern of cryptorchidism in Chinese population over the past 15 years using nationwide surveillance data. MATERIALS AND METHODS Data from the China National Population-based Birth Defects Surveillance System (2007-2021) were analyzed to calculate the prevalence rates of cryptorchidism, stratified by birth year, maternal age, maternal residence, and geographic region. Adjusted prevalence rate ratios were computed using Poisson regression, while trends in prevalence and average annual percent change (AAPC) were assessed using the joinpoint regression model. RESULTS During the study period, a total of 1,833 cases of cryptorchidism were identified among 2,565,964 full-term male births, resulting in prevalence rates of 7.14, 5.60, and 1.54 per 10,000 births for overall, isolated, and associated cryptorchidism, respectively. The overall prevalence increased from 3.86 to 11.20 per 10,000 births, with an AAPC of 7.9% (95% confidence interval: 5.5-11.0). Significant variations were observed across maternal age (< 20 years, 7.62/10,000; 20-24 years, 6.14/10,000; 25-29 years, 6.96/10,000; 30-34 years, 7.48/10,000; ≥35 years, 9.22/10,000), maternal residence (urban vs. rural, 10.99/10,000 vs. 2.86/10,000), and geographic region (eastern, 12.38/10,000; central, 2.36/10,000; western, 2.63/10,000). Approximately one-third of cryptorchidism cases were bilaterally, while two-thirds were unilateral. Commonly observed associated abnormalities included congenital hydrocele testis, as well as anomalies in the genital organs, circulatory system, and musculoskeletal system. CONCLUSION Despite lower rates compared to other countries, the increasing trend in prevalence of cryptorchidism necessitates further investigation and intervention.
Collapse
Affiliation(s)
- Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang H, Ruan YP, Ma S, Wang YQ, Wan XY, He YH, Li J, Zou ZY. Interaction between ozone and paternal smoking on fetal congenital heart defects among pregnant women at high risk: a multicenter maternal-fetal medicine study. World J Pediatr 2024; 20:621-632. [PMID: 37665504 DOI: 10.1007/s12519-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Evidence remains limited on the association between maternal ozone (O3) exposure and congenital heart defects (CHDs) in offspring, and few studies have investigated the interaction and modification of paternal smoking on this association. METHODS Using a sample including pregnant women at high risk of fetal CHD (with metabolic disease, first-trimester viral infection, family history of CHD, etc.) from a maternal-fetal medicine study covering 1313 referral hospitals in China during 2013-2021, we examined the associations between maternal O3 exposure during 3-8 weeks of gestational age and fetal CHD in offspring and investigated the interaction and modification of paternal smoking on this association. CHD was diagnosed by fetal echocardiograms, maximum daily 8-hour average O3 exposure data at a 10 km × 10 km spatial resolution came from the Tracking Air Pollution in China dataset, and paternal smoking was collected using questionnaires. Logistic regression models were used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among 27,834 pregnant women at high risk of fetal CHD, 17.4% of fetuses were diagnosed with CHD. Each 10 μg/m3 increase in maternal O3 exposure was associated with a 17% increased risk of CHD in offspring (OR = 1.17, 95% CI = 1.14-1.20). Compared with paternal nonsmoking and maternal low O3 exposure, the ORs (95% CI) of CHD for smoking and low O3 exposure, nonsmoking and high O3 exposure, and smoking and high O3 exposure were 1.25 (1.08-1.45), 1.81 (1.56-2.08), and 2.23 (1.84-2.71), respectively. Paternal smoking cessation seemingly mitigated the increased risk of CHD. CONCLUSIONS Maternal O3 exposure and paternal smoking were interactively associated with an increased risk of fetal CHD in offspring, which calls for effective measures to decrease maternal exposure to O3 pollution and secondhand smoke for CHD prevention.
Collapse
Affiliation(s)
- Huan Wang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Yan-Ping Ruan
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University; Maternal-Fetal Medicine center in Fetal Heart Disease, Beijing Anzhen Hospital, No. 2 Anzhen Rd, Chaoyang District, Beijing, 100029, China
| | - Sheng Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Ya-Qi Wang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Xiao-Yu Wan
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Yi-Hua He
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University; Maternal-Fetal Medicine center in Fetal Heart Disease, Beijing Anzhen Hospital, No. 2 Anzhen Rd, Chaoyang District, Beijing, 100029, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Zhi-Yong Zou
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38 Xueyuan Rd, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
HU SS. Cardiovascular Risk Factors in China. J Geriatr Cardiol 2024; 21:153-199. [PMID: 38544492 PMCID: PMC10964013 DOI: 10.26599/1671-5411.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Annual Report on Cardiovascular Health and Diseases in China (2022) intricate landscape of cardiovascular health in China. This section dissects cardiovascular risk factors in China which including hypertension, dyslipidemia, diabetes mellitus, chronic kidney disease, metabolic syndrome and air pollution. Hypertension prevalence has steadily increased in China, with efforts to control it facing challenges in achieving optimal rates, especially in rural areas. Interventions like salt substitutes and intensive blood pressure control show promise but need improvement. Abnormal lipid levels, indicative of dyslipidemia, have risen significantly, posing a risk for cardiovascular diseases. Despite efforts, many patients struggle to achieve target lipid levels, necessitating improved treatment strategies. Both type 1 and type 2 diabetes mellitus affect millions of adults in China, with long-term complications adding to the disease burden. Early intervention and effective management are crucial to mitigate its impact. Prevalent among older adults, chronic kidney disease is associated with diabetes mellitus, hypertension, and cardiovascular diseases, necessitating comprehensive management approaches. The prevalence of metabolic syndrome, characterized by a cluster of risk factors, has increased in both adults and adolescents, calling for lifestyle modifications and public health interventions. Ambient and household air pollution remain significant environmental risk factors, despite some improvements in air quality. Continued efforts to reduce emissions are essential for mitigating associated health risks. Addressing these risk factors requires a multifaceted approach, including public health initiatives, policy interventions, and individual-level strategies to promote healthy lifestyles and reduce environmental exposures. Surveillance and research efforts are crucial for monitoring trends and developing effective strategies to lessen the burden of cardiovascular diseases in China.
Collapse
Affiliation(s)
- Sheng-Shou HU
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
4
|
Zeng X, Zhan Y, Zhou W, Qiu Z, Wang T, Chen Q, Qu D, Huang Q, Cao J, Zhou N. The Influence of Airborne Particulate Matter on the Risk of Gestational Diabetes Mellitus: A Large Retrospective Study in Chongqing, China. TOXICS 2023; 12:19. [PMID: 38250975 PMCID: PMC10818620 DOI: 10.3390/toxics12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Emerging research findings suggest that airborne particulate matter might be a risk factor for gestational diabetes mellitus (GDM). However, the concentration-response relationships and the susceptible time windows for different types of particulate matter may vary. In this retrospective analysis, we employ a novel robust approach to assess the crucial time windows regarding the prevalence of GDM and to distinguish the susceptibility of three GDM subtypes to air pollution exposure. This study included 16,303 pregnant women who received routine antenatal care in 2018-2021 at the Maternal and Child Health Hospital in Chongqing, China. In total, 2482 women (15.2%) were diagnosed with GDM. We assessed the individual daily average exposure to air pollution, including PM2.5, PM10, O3, NO2, SO2, and CO based on the volunteers' addresses. We used high-accuracy gridded air pollution data generated by machine learning models to assess particulate matter per maternal exposure levels. We further analyzed the association of pre-pregnancy, early, and mid-pregnancy exposure to environmental pollutants using a generalized additive model (GAM) and distributed lag nonlinear models (DLNMs) to analyze the association between exposure at specific gestational weeks and the risk of GDM. We observed that, during the first trimester, per IQR increases for PM10 and PM2.5 exposure were associated with increased GDM risk (PM10: OR = 1.19, 95%CI: 1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and isolated post-load hyperglycemia (GDM-IPH) risk (PM10: OR = 1.23, 95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Second-trimester O3 exposure was positively correlated with the associated risk of GDM, while pre-pregnancy and first-trimester exposure was negatively associated with the risk of GDM-IPH. Exposure to SO2 in the second trimester was negatively associated with the risk of GDM-IPH. However, there were no observed associations between NO2 and CO exposure and the risk of GDM and its subgroups. Our results suggest that maternal exposure to particulate matter during early pregnancy and exposure to O3 in the second trimester might increase the risk of GDM, and GDM-IPH is the susceptible GDM subtype to airborne particulate matter exposure.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Wei Zhou
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Tong Wang
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Qing Chen
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Dandan Qu
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiao Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Jia Cao
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Niya Zhou
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
5
|
Qiu Z, Li W, Qiu Y, Chen Z, Yang F, Xu W, Gao Y, Liu Z, Li Q, Jiang M, Liu H, Zhan Y, Dai L. Third trimester as the susceptibility window for maternal PM 2.5 exposure and preterm birth: A nationwide surveillance-based association study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163274. [PMID: 37019233 DOI: 10.1016/j.scitotenv.2023.163274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Maternal PM2.5 exposure has been identified as a potential risk factor for preterm birth, yet the inconsistent findings on the susceptible exposure windows may be partially due to the influence of gaseous pollutants. This study aims to examine the association between PM2.5 exposure and preterm birth during different susceptible exposure windows after adjusting for exposure to gaseous pollutants. We collected 2,294,188 records of singleton live births from 30 provinces of China from 2013 to 2019, and the gridded daily concentrations of air pollutants (including PM2.5, O3, NO2, SO2, and CO) were derived by using machine learning models for assessing individual exposure. We employed logistic regression to develop single-pollutant models (including PM2.5 only) and co-pollutant models (including PM2.5 and a gaseous pollutant) to estimate the odds ratio for preterm birth and its subtypes, with adjustment for maternal age, neonatal sex, parity, meteorological conditions, and other potential confounders. In the single-pollutant models, PM2.5 exposure in each trimester was significantly associated with preterm birth, and the third trimester exposure showed a stronger association with very preterm birth than that with moderate to late preterm birth. The co-pollutant models revealed that preterm birth might be significantly associated only with maternal exposure to PM2.5 in the third trimester, and not with exposure in the first or second trimester. The observed significant associations between preterm birth and maternal PM2.5 exposure in the first and second trimesters in single-pollutant models might primarily be influenced by exposure to gaseous pollutants. Our study provides evidence that the third trimester may be the susceptible window for maternal PM2.5 exposure and preterm birth. The association between PM2.5 exposure and preterm birth could be influenced by gaseous pollutants, which should be taken into consideration when evaluating the impact of PM2.5 exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yang Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Fumo Yang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Dai
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Nirel R, Shoham T, Rotem R, Ahmad WA, Koren G, Kloog I, Golan R, Levine H. Maternal exposure to particulate matter early in pregnancy and congenital anomalies in offspring: Analysis of concentration-response relationships in a population-based cohort with follow-up throughout childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163082. [PMID: 37004765 DOI: 10.1016/j.scitotenv.2023.163082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/27/2023]
Abstract
Studies have suggested an association between particulate matter (PM) air pollution and certain congenital anomalies (CAs). However, most studies assumed a linear concentration-response relation and were based on anomalies that were ascertained at birth or up to 1 year of age. We investigated associations between exposures to PM during the first trimester of pregnancy and CAs in 9 organ systems using birth and childhood follow-up data from a leading health care provider in Israel. We conducted a retrospective population-based cohort study among 396,334 births, 2004-2015. Daily PM data at a 1 × 1 km spatial grid were obtained from a satellite-derived prediction models and were linked to the mothers' residential addresses at birth. Adjusted odds ratios (ORs) were estimated with logistic regression models using exposure levels as either continuous or categorical variables. We captured 57,638 isolated CAs with estimated prevalence of 96 and 136 anomalies per 1000 births in the first year of life and by age 6 years, respectively. Analysis of continuous PM with diameter < 2.5 μm (PM2.5) indicated a supra-linear relation with anomalies in the circulatory, respiratory, digestive, genital and integument systems (79 % of CAs). The slope of the concentration-response function was positive and steepest for PM2.5 lower than the median concentration (21.5 μg/m3) and had a less steep or negative slope at higher levels. Similar trends were observed for PM2.5 quartiles. For example, for cardiac anomalies, the ORs were 1.09 (95 % confidence interval: 1.02, 1.15), 1.04 (0.98, 1.10) and 1.00 (0.94, 1.07) for births in the second, third and fourth quartiles, respectively, when compared to the first quartile. In sum, this study adds new evidence for adverse effects of air pollution on neonatal health even with low-level air pollution. Information on late diagnosis of children with anomalies is important in evaluating the burden of disease.
Collapse
Affiliation(s)
- Ronit Nirel
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomer Shoham
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Rotem
- Maccabi Institute of Research and Innovation, Maccabi Healthcare Services, Tel-Aviv, Israel; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Wiessam Abu Ahmad
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Koren
- The Dr. Miriam and Sheldon G. Adelson Medical School, Ariel University, Ariel, Israel
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Golan
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Ma Z, Li W, Yang J, Qiao Y, Cao X, Ge H, Wang Y, Liu H, Tang N, Yang X, Leng J. Early prenatal exposure to air pollutants and congenital heart disease: a nested case-control study. Environ Health Prev Med 2023; 28:4. [PMID: 36642530 PMCID: PMC9845069 DOI: 10.1265/ehpm.22-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease. METHODS The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease. RESULTS A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants. CONCLUSIONS This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Weiqin Li
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Jicui Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yijuan Qiao
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Han Ge
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yue Wang
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hongyan Liu
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Tianjin Women and Children’s Health Center, Tianjin, China
| |
Collapse
|
8
|
Zhang M, Chen J, Jiang Y, Chen T. Fine particulate matter induces heart defects via AHR/ROS-mediated endoplasmic reticulum stress. CHEMOSPHERE 2022; 307:135962. [PMID: 35948106 DOI: 10.1016/j.chemosphere.2022.135962] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Accumulating body of evidence indicates that exposure to fine particulate matter (PM2.5) is closely associated with congenital heart disease in the offspring, but the underlying molecular mechanisms remain to be elucidated. We previously reported that extractable organic matter (EOM) from PM2.5 induces reactive oxygen species (ROS) overproduction by activating aromatic hydrocarbon receptor (AHR), leading to heart defects in zebrafish embryos. We hypothesized that endoplasmic reticulum (ER) stress might be elicited by the excessive ROS production and thereby contribute to the cardiac developmental toxicity of PM2.5. In this study, we examined the effects of EOM on endoplasmic reticulum (ER) stress, apoptosis, and Wnt signal pathway in zebrafish embryos, and explored their roles in EOM-induced heart defects. Our results showed that 4-Phenylbutyric acid (4-PBA), a pharmaceutical inhibitor of ER stress, significantly attenuated the EOM-elevated heart malformation rates. Moreover, EOM upregulated the expression levels of ER stress marker genes including CHOP and PDI in the heart of zebrafish embryos, which were counteracted by genetic or pharmaceutical inhibition of AHR activity. The ROS scavenger N-Acetyl-l-cysteine (NAC) also abolished the EOM-induced ER stress. We further demonstrated that both 4-PBA and CHOP genetic knockdown rescued the PM2.5-induced ROS overproduction, apoptosis and suppression of Wnt signaling. In conclusion, our results indicate that PM2.5 induces AHR/ROS-mediated ER stress, which leads to apoptosis and Wnt signaling inhibition, ultimately resulting in heart defects.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jin Chen
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yan Jiang
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Influence of DOM and its subfractions on the mobilization of heavy metals in rhizosphere soil solution. Sci Rep 2022; 12:14082. [PMID: 35982100 PMCID: PMC9388525 DOI: 10.1038/s41598-022-18419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Long-term industrial pollution, wastewater irrigation, and fertilizer application are known factors that can contribute to the contamination of heavy metals (HMs) in agricultural soil. In addition, dissolved organic matter (DOM) plays key roles in the migration and fate of HMs in soil. This study investigated the effects of amending exogenous DOM extracted from chicken manure (DOMc), humus soil (DOMs), rice husk (DOMr), and its sub-fractions on the mobilization and bio-uptake of Cd, Zn, and Pb. The results suggested that the exogenous DOM facilitate the dissolution of HMs in rhizosphere soil, and the maximum solubility of Zn, Cd, and Pb were 1264.5, 121.3, and 215.7 μg L-1, respectively. Moreover, the proportion of Zn-DOM and Cd-DOM increased as the DOM concentration increased, and the highest proportions were 97.5% and 86.9%. However, the proportion of Pb-DOM was stable at > 99% in all treatments. In addition, the proportion of hydrophilic acid (Hy) and Pb/Cd in the rhizosphere soil solution were 17.5% and 8.3%, respectively. This finding suggested that the Hy-metals complex has a vital influence on the mobilization of metals, besides its complexation with fulvic acid and humic acid. Furthermore, the elevated DOM addition contributed to an increment of HMs uptake by Sedum alfredii, in the following order, DOMc > DOMs > DOMr. This study can provide valuable insights to enhance the development of phytoremediation technologies and farmland manipulation. Since the risk that exogenous DOM would increase the uptake of HMs by crops, it is also needed to evaluate this case from an agricultural management perspective.
Collapse
|
10
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y, Chen T. Synergistic protective effects of folic acid and resveratrol against fine particulate matter-induced heart malformations in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113825. [PMID: 36068752 DOI: 10.1016/j.ecoenv.2022.113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a major environmental health problem worldwide, and recent studies indicate that maternal PM2.5 exposure is closely associated with congenital heart diseases (CHDs) in offspring. We previously found that supplementation with folic acid (FA) or Resveratrol (RSV) could protect against heart defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5 by targeting aryl hydrocarbon receptor (AHR) signaling and reactive oxygen species (ROS) production respectively. Thus, we hypothesized that FA combined with RSV may have a synergistic protective effect against PM2.5-induced heart defects. To test our hypothesis, we treated zebrafish embryos with EOM in the presence or absence of FA, RSV or a combination of both. We found that RSV and FA showed a clear synergistic protection against EOM-induced heart defects in zebrafish embryos. Further studies showed that FA and RSV suppressed EOM-induced AHR activity and ROS generation respectively. Although only RSV inhibited EOM-induced apoptosis, FA enhanced the inhibitory effect of RSV. Moreover, vitamin C (VC), a typical antioxidant, also exhibits a synergistic inhibitory effect with FA on EOM-induced apoptosis and heart defects. In conclusion, supplementation with FA and RSV have a synergistic protective effect against PM2.5-induced heart defects in zebrafish embryos by targeting AHR activity and ROS production respectively. Our results indicate that, in the presence of antioxidants, FA even at a low concentration level could protect against the high risk of CHDs caused by air pollution.
Collapse
Affiliation(s)
- Jin Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Mingxuan Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Zou
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Wu S, Hao G, Zhang Y, Chen X, Ren H, Fan Y, Zhang Y, Bi X, Du C, Bai L, Wu X, Tan J. Poor ovarian response is associated with air pollutants: A multicentre study in China. EBioMedicine 2022; 81:104084. [PMID: 35660784 PMCID: PMC9163489 DOI: 10.1016/j.ebiom.2022.104084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human evidence on the association between air pollution and ovarian response is scarce. Poor ovarian response (POR) with an incidence of 5-35% is a tricky problem in IVF treatment. METHODS In this large-scale multicentre study, we included 2186 women with POR (< 4 oocytes retrieved) and 7033 women with a normal ovarian response (10-15 oocytes retrieved), who underwent their first in vitro fertilization treatment in five cities in northern China during 2015-2020. Average concentrations of six air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) during different exposure windows (5 days, 1, 3, 6, and 12 months) before oocyte pick up (OPU) were calculated using data from the air monitoring station nearest to the residential site as approximate individual exposure. Logistic regression models were employed to assess the association between exposure to air pollutants and the risk of POR. Stratification analyses were conducted based on female age. Sensitivity analyses were performed in poor responders identified by Bologna criteria and women with unexpected POR. FINDINGS We detected that increased SO2 exposure during all exposure windows before OPU was associated with a higher risk of POR, especially for women ≤ 30 years old. In the stratified analysis, the effect sizes were larger for the unexpected poor ovarian response. INTERPRETATION The findings provide human evidence for adverse effects of exposure to ambient air pollutants on ovarian response and underscore the need to reduce ambient air pollution exposure in women of reproductive age to protect human fertility. FUNDING This study was granted from the National Key Research and Development Program (2018YFC1004203), the Major Special Construction Plan for Discipline Construction Project of China Medical University (3110118033), the Shengjing Freelance Researcher Plan of Shengjing Hospital of China Medical University, and the National Natural Science Foundation of China (82071601), the Central Government Special Fund for Local Science and Technology Development (2020JH6/10500006).
Collapse
Affiliation(s)
- Shanshan Wu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, PR China
| | - Xiujuan Chen
- Reproductive Medicine Centre, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, PR China
| | - Haiqin Ren
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Yanli Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yinfeng Zhang
- Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, PR China
| | - Xingyu Bi
- Centre of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Centre of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Chen Du
- Reproductive Medicine Centre, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, PR China
| | - Lina Bai
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Xueqing Wu
- Centre of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Centre of Shanxi, Taiyuan, Shanxi 030013, PR China.
| | - Jichun Tan
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China.
| |
Collapse
|