1
|
Akumuntu A, Jho EH, Park SJ, Hong JK. Food waste biochar for sustainable agricultural use: Effects on soil enzymes, microbial community, lettuce, and earthworms. CHEMOSPHERE 2024; 366:143552. [PMID: 39419328 DOI: 10.1016/j.chemosphere.2024.143552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the effects of food waste biochar (FWB) on the biological properties of soil, including the microbial community structure, enzyme activities, lettuce growth, and earthworm ecotoxicity. This holistic assessment of various soil organisms was used to assess the potential of FWB as a soil amendment strategy. Pot experiments were carried out over a 28-d period using various FWB concentrations in soil (0-3% w/w). The presence of FWB enhanced the activity of alkaline phosphatase and beta-glucosidase in proportion to the FWB concentration. Similarly, the dehydrogenase activity after 28 d was positively correlated with the FWB concentration. Notably, the application of FWB improved the bacterial diversity in the soil, particularly among hydrocarbonoclastic bacteria, while also prompting a shift in the fungal community structure at the class level. Measures of lettuce growth, including total fresh weight, shoot length, and leaf number, also generally improved with the addition of FWB, particularly at higher concentrations. Importantly, FWB did not adversely affect the survival or weight of earthworms. Collectively, these findings suggest that FWB can enhance soil microbial enzyme activity and support plant growth-promoting rhizobacteria, potentially leading to increased crop yields. This highlights the potential of FWB as an eco-friendly soil amendment strategy.
Collapse
Affiliation(s)
- Athanasie Akumuntu
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), Seoul, 03760, Republic of Korea.
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
2
|
Hao Y, Li J, Li Z, Peng Y, Hussain S, Fu T, Li H, Chang J, Chen L, Zhang B. Greenhouse gas emissions and their driving factors among different flowering Chinese cabbage (Brassica campestris L.) varieties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38217-38231. [PMID: 38795300 DOI: 10.1007/s11356-024-33769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/19/2024] [Indexed: 05/27/2024]
Abstract
Crop cultivars have an influence on greenhouse gas (GHG) emissions, and there is variation between varieties. However, there are few reports available on the differences in GHG emissions and their driving factors among vegetable varieties. In this study, we conducted a field experiment to examine the variances in GHG emissions and their contributing factors among eight flowering Chinese cabbage varieties (considering growth period, leaf shape, and colour). The results showed significant differences in GHG emissions within varieties; early-maturing varieties exhibited GHG by 25.6% and 15.3%, respectively, when compared to mid- and late-maturing varieties. Among the different leaf types and color classifications, light-colored and sharp-leafed varieties had the lower global warming potential (GWP) overall. Cumulative CO2 emissions were influenced by leaf SPAD values and biomass, while cumulative N2O emissions were driven mainly by stem thickness, carbon accumulation, leaf SPAD values, and biomass. In summary, the selection of light-colored varieties with pointed leaves and shorter growth periods in actual production contributed positively to the reduction of carbon emissions from flowering Chinese cabbage production. Through efficient variety screening, this study provides a win-win strategy for achieving efficient vegetable production while also addressing the global climate challenge.
Collapse
Affiliation(s)
- Yongzhou Hao
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
- Faculty of Food Science and Engineering, Foshan University, Foshan, 258000, China
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
| | - Zhen Li
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shahid Hussain
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
| | - Tianhong Fu
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
| | - Hongzhao Li
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
- Faculty of Food Science and Engineering, Foshan University, Foshan, 258000, China
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, No.66, Jinying Road, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Garau M, Lo Cascio M, Vasileiadis S, Sizmur T, Nieddu M, Pinna MV, Sirca C, Spano D, Roggero PP, Garau G, Castaldi P. Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs). Heliyon 2024; 10:e28050. [PMID: 38509955 PMCID: PMC10951655 DOI: 10.1016/j.heliyon.2024.e28050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Hemp (Cannabis sativa L.) is known to tolerate high concentrations of soil contaminants which however can limit its biomass yield. On the other hand, organic-based amendments such as biochar can immobilize soil contaminants and assist hemp growth in soils contaminated by potentially toxic elements (PTEs), allowing for environmental recovery and income generation, e.g. due to green energy production from plant biomass. The aim of this study was therefore to evaluate the suitability of a softwood-derived biochar to enhance hemp growth and promote the assisted phytoremediation of a PTE-contaminated soil (i.e., Sb 2175 mg kg-1; Zn 3149 mg kg-1; Pb 403 mg kg-1; and Cd 12 mg kg-1). Adding 3% (w/w) biochar to soil favoured the reduction of soluble and exchangeable PTEs, decreased soil dehydrogenase activity (by ∼2.08-fold), and increased alkaline phosphomonoesterase and urease activities, basal respiration and soil microbial carbon (by ∼1.18-, 1.22-, 1.22-, and 1.66-fold, respectively). Biochar increased the abundance of selected soil culturable microorganisms, while amplicon sequencing analysis showed a positive biochar impact on α-diversity and the induction of structural changes on soil bacterial community structure. Biochar did not affect root growth of hemp but significantly increased its aboveground biomass by ∼1.67-fold for shoots, and by ∼2-fold for both seed number and weight. Biochar increased the PTEs phytostabilisation potential of hemp with respect to Cd, Pb and Zn, and also stimulated hemp phytoextracting capacity with respect to Sb. Overall, the results showed that biochar can boost hemp yield and its phytoremediation effectiveness in soils contaminated by PTEs providing valuable biomass that can generate profit in economic, environmental and sustainability terms.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mauro Lo Cascio
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | | | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Costantino Sirca
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Donatella Spano
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
5
|
Coccia M. New directions of technologies pointing the way to a sustainable global society. SUSTAINABLE FUTURES 2023; 5:100114. [DOI: 10.1016/j.sftr.2023.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Yuan R, Salam M, Miao X, Yang Y, Li H, Wei Y. Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil. ENVIRONMENTAL RESEARCH 2023; 222:115383. [PMID: 36716806 DOI: 10.1016/j.envres.2023.115383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biochar has been widely applied in soil and water. However, the fate and transport of biochar are not yet fully understood. Here, biochar's disintegration, transport, and the effect of temperature on biochar transport in soil (purple soil)-water systems were investigated. The results showed that the potentially transportable components (PTC) of biochar for corn straw, wheat straw, rice straw, rice husk and wood biochar reached 6.22-7.60%, 5.96-12.29%, 11.77-12.45%, 5.34-6.26% and 5.08-6.14% by mass, respectively. An external force (ultrasound exposure) intensified the physical disintegration, including colloidal and nanoparticles from larger particles, thereby increasing the transport potential. The mass recovery rates of PTC for rice straw biochar after penetrating through soil at 5, 20 and 35 °C reached 44.25%, 32.97% and 10.98%, respectively, which was supported by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory results. Elevated temperatures increased the hydrodynamic average diameter of PTC, and the Zeta potential of PTC and soil at 35 °C were less negative than those at 5 and 20 °C. As a result, biochar's transportability decreases with increasing temperature in the soil-water system, during which the enhanced PTC aggregation and the decreased electrostatic repulsion between biochar and soil particles played a crucial role. The increase in electrical conductivity in the soil-water system may be the main reason for the decrease in electrostatic repulsion at higher temperatures. The findings are helpful for an in-depth understanding of the environmental fate and managing the transport risk of biochar.
Collapse
Affiliation(s)
- Ruoyu Yuan
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Coccia M. New technological trajectories to reduce fossil-fuel pollution and support sustainable socioeconomic systems.. [DOI: 10.21203/rs.3.rs-2323975/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
One of the fundamental problems in modern economies is high carbon emissions and diffusion of pollutants from industrial activities focused on fossil-based energy that generate detrimental effects on climate, environment and human population. The goal of this study is to analyze new trajectories of technologies that can reduce, whenever possible, environmental degradation and support a sustainable growth. A model of technological evolution is proposed to detect new technological trajectories directed to sustainability. Results reveal that technologies with a high sustainability perspective for reducing environmental pollution and climate change are: offshore wind turbines, carbon capture storage technology associated with renewable energy, cellular agriculture and blockchain technology directed positive environmental impact. Findings here can sustain decision making of policymakers towards investment in promising technological directions that reduce environmental pollution and sustain ecological transition and sustainable development in human society.
Collapse
|
9
|
Liu Q, Zhong L, Hu Y, Fu L, Hu X, Gu Y, Xie Q, Liang F, Liu Q, Lu Y. Effects of modified biochars on the shifts of short-chain fatty acid profile, iron reduction, and bacterial community in paddy soil. FEMS Microbiol Ecol 2022; 98:6823699. [PMID: 36367530 DOI: 10.1093/femsec/fiac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation. Compared to CK treatment, the accumulation of SCFAs was largely inhibited by the amendment of biochars. Besides, OBC and WBC increased the accumulation of Fe(II) at the initial stage of incubation. Via 16S rRNA gene sequencing, modified biochars caused significant response of bacterial community in comparison to WBC at Day 0-1, and three biochars favored bacterial α-diversity in the paddy soil at the end of the incubation. Interestingly, positive and negative correlations between NBC and several bacteria taxa (e.g. Geobacter, Fonticella and Clostridium) were observed. The study revealed that modified biochars had significant effects on the shifts of SCFAs, Fe(III) reduction and bacterial diversity, which provides fundamental information for future application of modified biochars in rice cropping ecosystem.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yingju Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Leiling Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xingxin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yujing Gu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Fangyi Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
10
|
Bao Z, Shi C, Tu W, Li L, Li Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120184. [PMID: 36113644 DOI: 10.1016/j.envpol.2022.120184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution has become a real threat to mankind in the 21st century. On the one hand, soil pollution has reduced the world's arable land area, resulting in the contradiction between the world's population expansion and the shortage of arable land. On the other hand, soil pollution has seriously disrupted the soil ecological balance and significantly affected the biodiversity in the soil. Soil pollutants may further affect the survival, reproduction and health of humans and other organisms through the food chain. Several studies have suggested that biochar has the potential to act as a soil conditioner and to promote crop growth, and is widely used to remove environmental pollutants. Biochar modified by physical, chemical, and biological methods will affect the treatment efficiency of soil pollution, soil quality, soil ecology and interaction with organisms, especially with microorganisms. Therefore, in this review, we summarized several main biochar modification methods and the mechanisms of the modification and introduced the effects of the application of modified biochar to soil pollutant control, soil ecological regulation and soil nutrient regulation. We also introduced some case studies for the development of modified biochars suitable for different soil conditions, which plays a guiding role in the future development and application of modified biochar. In general, this review provides a reference for the green treatment of different soil pollutants by modified biochar and provides data support for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Khan MN, Li D, Shah A, Huang J, Zhang L, Núñez-Delgado A, Han T, Du J, Ali S, Sial TA, Lan Z, Hayat S, Song Y, Bai Y, Zhang H. The impact of pristine and modified rice straw biochar on the emission of greenhouse gases from a red acidic soil. ENVIRONMENTAL RESEARCH 2022; 208:112676. [PMID: 34998810 DOI: 10.1016/j.envres.2022.112676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
With the growing awareness of environmental impacts of land degradation, pressure is mounting to improve the health and productivity of degrading soils, which could be achieved through the use of raw and modified biochar materials. The primary objective of the current study was to investigate the efficiency of pristine and Mg-modified rice-straw biochar (RBC and MRBC) for the reduction of greenhouse gases (GHG) emissions and improvement of soil properties. A 90 days' incubation experiment was conducted using treatments which included control (CK), two RBC dosages (1% and 2.5%), and two MRBC doses (1% and 2.5%). Soil physico-chemical and biological properties were monitored to assess the effects due to the treatments. Results showed that both biochars improved soil physicochemical properties as the rate of biochar increased. The higher rates of biochar (RBC2.5 and MRBC2.5) particularly increased enzymatic activities (Catalase, Invertase and Urease) in comparison to the control. Data obtained for phospholipid fatty acid (PLFA) concentration indicated an increase in the Gram-negative bacteria (G-), actinomycetes and total PLFA with the increased biochar rate, while Gram-positive bacteria (G+) showed no changes to either level of biochar. As regards fungi concentration, it decreased with the biochar addition, whereas arbuscular mycorrhizal fungi (AMF) showed non-significant changes. The release of CO2, CH4 and N2O showed a decreasing trend over the time. CO2 cumulative emission decreased for MRBC1 (5%) and MRBC2.5 (9%) over the pristine biochar treatments. The cumulative N2O emission decreased by 15-32% for RBC1 and RBC2.5 and by 22-33% for MRBC1 and MRBC2.5 as compared to the control, whereas CH4 emission showed non-significant changes. Overall, the present study provides for the first-time data that could facilitate the correct use of Mg-modified rice biochar as a soil additive for the mitigation of greenhouse gas emission and improvement of soil properties.
Collapse
Affiliation(s)
- Muhammad Numan Khan
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongchu Li
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Asad Shah
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Huang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Lu Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. s/n, University of Santiago de Compostela, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Tainfu Han
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Jiangxue Du
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tanveer Ali Sial
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhilong Lan
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sikandar Hayat
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Yi Song
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan, 454010, China
| | - Yijing Bai
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China
| | - Huimin Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, Hunan, China, Beijing, 100081, China.
| |
Collapse
|