1
|
Thimmarayan S, Mohan H, Murali Krishna Vasamsetti B, Kim G, Natesan K, Jayaprakash A, Shin T. Ni/Co/Carbon nitride derived from ZIF-67 (MOF) nanocomposite: Enhanced light-driven photocatalytic degradation of methylparaben, mechanism & toxicity. CHEMOSPHERE 2024; 347:140680. [PMID: 37951398 DOI: 10.1016/j.chemosphere.2023.140680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
A nickel oxide/cobalt/carbon nitride (Ni/Co/CN) nanocomposite synthesized via co-precipitation was used for the degradation of methylparaben (MEP). Various analytical techniques were used to ascertain the structural, optical, and electrochemical characteristics of the synthesized nanocomposite. The unique nature of the compound without any free particles over the CN was established. Photocatalytic degradation studies demonstrated the superiority of 3-Ni/Co/CN over bare NiO, Co/CN, 1-Ni/Co/CN, and 5-Ni/Co/CN. Near complete MEP degradation (100%) was achieved after 120 min of incubation with MEP 75 mg L-1 in acidic medium pH (3) for an initial concentration of 3-Ni/Co/CN (10 mg/100 mL). HPLC-MS/MS analysis was used to elucidate the degradation pathway, and the catalyst was found stable for four subsequent cycles. Hence, our nanocatalyst effectively degraded MEP. Furthermore, microbial, aquatic, and animal studies demonstrated the environmental efficiency of the synthesized nanomaterials.
Collapse
Affiliation(s)
- Srivalli Thimmarayan
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur- 635 601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Karthi Natesan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, 560064, India
| | - Arul Jayaprakash
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur- 635 601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India.
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
2
|
Kershi RM, Alshehri AM, Attiyah RM. Enhancement of Ni-Zn ferrite nanoparticles parameters via cerium element for optoelectronic and energy applications. DISCOVER NANO 2023; 18:139. [PMID: 37938460 PMCID: PMC10632318 DOI: 10.1186/s11671-023-03921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
This work is concerned with fabricating ferrite nanoparticles of nickel-zinc with the chemical formula: Ni0.55Zn0.45Fe2-xCexO4, 0 ≤ x ≤ 0.011 by co-deposition technique and modifying their electrical, microscopic, spectroscopic, optical, electrical and dielectric properties as advanced engineering materials through doping with the cerium (Ce) element. XRD patterns displayed that the samples have a monophasic Cerium-Nickel-zinc (CNZ) spinel structure without other impurities for cerium concentration (x) ≤ 0.066. Both values of crystallite size and lattice parameters decrease from 33.643 to 23.137 nm and from 8.385 to 8.353 nm, respectively, with the increasing Ce ions substitution content from 0 to 0.066. SEM images indicate that grains of the fabricated compounds are smaller, more perfect, more homogeneous, and less agglomeration than those of the un-doped Ni-Zn nano-ferrites. The maximum intensity of first-order Raman spectral peaks (Eg, F2g(2), A1g(2), and A1g(1)) of CNZ ferrite nanoparticles are observed at about (330, 475, 650, 695) cm-1, respectively, that confirms the CNZ samples have the cubic spinel structure. The direct and indirect optical energy bandgaps of CNZ samples have a wide spectrum of values from semiconductors to insulators according to cerium concentration. The results showed that the values of dielectric constant, dielectric loss factor, and Ac conductivity and the conductivity transition temperature are sensitive to cerium ions content. AC conductivity exhibited by the CNZ samples has the semiconductor materials behavior, where the AC conductivity increases due to temperature or doping concentration. The results indicate that Ni0.55Zn0.45Fe1.944Ce0.066O4 ferrite nanoparticles may be selected for optoelectronic devices, high-frequency circuits, and energy storage applications.
Collapse
Affiliation(s)
- R M Kershi
- Physics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.
- Physics Department, Faculty of Science, Ibb University, Ibb, Yemen.
| | - A M Alshehri
- Physics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - R M Attiyah
- Physics Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Al-Najar B, Kamel AH, Albuflasa H, Hankins NP. Spinel ferrite nanoparticles as potential materials in chlorophenol removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104976-104997. [PMID: 37723389 DOI: 10.1007/s11356-023-29809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Persistent organic pollutants (POPs) including chlorophenols (CPs) are increasing in water effluents, creating serious problems for both aquatic and terrestrial lives. Several research attempts have considered the removal of CPs by functionalised nanomaterials as adsorbents and catalysts. Besides the unique crystal structure, spinel ferrite nanomaterials (SFNs) own interesting optical and magnetic properties that give them the potential to be utilised in the removal of different types of CPs. In this review, we highlighted the recent research work that focused on the application of SFNs in the removal of different CP substances based on the number of chlorine atom attached to the phenolic compound. We have also discussed the structure and properties of SFN along with their numerous characterisation tools. We demonstrated the importance of identifying the structure, surface area, porosity, optical properties, etc. in the efficiency of the SFN during the CP removal process. The reviewed research efforts applied photocatalysis, wet peroxide oxidation (WPO), persulfate activated oxidation and adsorption. The studies presented different paths of enhancing the SFN ability to remove the CPs including doping (ion substitution), oxide composite structure and polymer composite structure. Experimental parameters such as temperature, dosage of CPs and SFN structure have shown to have a major effect in the CP removal efficiency. More attention is needed to investigate the different properties of SFN that can be tailored through different techniques and expected to have major role in the removal mechanism of CPs.
Collapse
Affiliation(s)
- Basma Al-Najar
- Department of Physics, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain.
| | - Ayman H Kamel
- Department of Chemistry, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Hanan Albuflasa
- Department of Physics, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain
| | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, Oxford, OX3 1PJ, UK
| |
Collapse
|
4
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
5
|
Efficient separation of uranium in solution by ZnFe2O4 doped with TiO2: Adsorption behaviors and mechanism study. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zhu J, Zhu Y, Chen Z, Wu S, Fang X, Yao Y. Progress in the Preparation and Modification of Zinc Ferrites Used for the Photocatalytic Degradation of Organic Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10710. [PMID: 36078426 PMCID: PMC9518589 DOI: 10.3390/ijerph191710710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Zinc ferrite is a type of photocatalytic material with high physicochemical stability, narrow band gap, high carrier separation efficiency, high porosity, and paramagnetism, which makes it easy to recover. Thus, zinc ferrite is widely used as a photocatalyst in water treatment. In this paper, the preparation principles as well as the advantages and disadvantages of typical methods used to prepare zinc ferrite including hydrothermal, co-precipitation, sol-gel, and other novel methods such as biosynthesis have been summarized. Modification methods such as elemental doping, composite formation, and morphological modification have been highlighted. Using these modification methods, the catalytic activity of zinc ferrite toward the photocatalytic degradation of organic pollutants in water has been enhanced. Biosynthesis is regarded as a promising preparation method that uses biological materials instead of chemical materials to achieve the large-scale preparation of zinc ferrite using low cost, energy efficient, and environmentally friendly processes. Meanwhile, the combination of multiple modification techniques to enhance the photocatalytic performance of zinc ferrite will be an important research trend in the future.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Zhen Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Sijia Wu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Xiaojian Fang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yan Yao
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Bahadur A, Iqbal S, Javed M, Hassan SS, Nadeem S, Akbar A, Alzhrani RM, Al-Anazy MM, Elkaeed EB, Awwad NS, Ibrahium HA, Mohyuddin A. Construction of a binary S-scheme S-g-C 3N 4/Co-ZF heterojunction with enhanced spatial charge separation for sunlight-driven photocatalytic performance. RSC Adv 2022; 12:23263-23273. [PMID: 36090406 PMCID: PMC9380560 DOI: 10.1039/d1ra08525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A step-scheme (S-scheme) photocatalyst made of sulfurized graphitic carbon nitride/cobalt doped zinc ferrite (S-g-C3N4/Co-ZF) was constructed using a hydrothermal process because the building of S-scheme systems might increase the lifespan of highly reactive charge carriers. Utilizing cutting-edge methods, the hybrid photocatalyst was evaluated by employing TEM, XPS, XRD, BET, FTIR, transient photo-response, UV-vis, EIS and ESR signals. In order to create a variety of binary nanocomposites (NCs), nanoparticles (NPs) of 6% cobalt doped zinc ferrite (Co-ZF) were mixed with S-g-C3N4 at various concentrations, ranging from 10 to 80 wt%. For photocatalytic dye removal, a particular binary NC constructed between S-g-C3N4 and Co-ZF produces a huge amount of catalytic active sites. The findings showed that loading of S-g-C3N4 on 6% Co-ZF NPs serves as a good heterointerface for e-/h+ separation and transportation through the S-scheme S-g-C3N4/Co-ZF heterojunction. By boosting the hybrid system's BET surface area for the photocatalytic process, the addition of 6% Co-ZF improves the system's ability to absorb more sunlight and boosts its photocatalytic activity. The highest photo-removal effectiveness (98%), which is around 2.45 times higher than that of its competitors, was achieved by the hybrid photocatalyst system with an ideal loading of 48% Co-ZF. Furthermore, the trapping studies showed that the primary species involved in the MB aqueous photo-degradation were ˙OH- and h+.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University Wenzhou China
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Syeda Saba Hassan
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| | - Ali Akbar
- Department of Physics, University of Agriculture Faisalabad (UAF) Faisalabad Punjab 38000 Pakistan
| | - Rami M Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University Riyadh 13713 Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology Lahore Pakistan
| |
Collapse
|
8
|
Saravanakumar K, SivaSantosh S, Sathiyaseelan A, Naveen KV, AfaanAhamed MA, Zhang X, Priya VV, MubarakAli D, Wang MH. Unraveling the hazardous impact of diverse contaminants in the marine environment: Detection and remedial approach through nanomaterials and nano-biosensors. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128720. [PMID: 35366447 DOI: 10.1016/j.jhazmat.2022.128720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Marine pollution is one of the most underlooked forms of pollution as it affects most aquatic lives and public health in the coastal area. The diverse form of the hazardous pollutant in the marine ecosystem leads the serious genetic level disorders and diseases which include cancer, diabetes, arthritis, reproductive, and neurological diseases such as Parkinson's, Alzheimer's, and several microbial infections. Therefore, a recent alarming study on these pollutants, the microplastics have been voiced out in many countries worldwide, it was even found to be in the human placenta. In recent times, nanomaterials have demonstrated their potential in the detection and remediation of sensitive contaminants. In this review, we presented a comprehensive overview of the source, and distribution of diverse marine pollution on both aquatic and human health by summarizing the concentration of diverse pollutions (heavy metals, pesticides, microbial toxins, and micro/nano plastics) in marine samples such as soil, water, and seafood. Followed by emphasizing its ecotoxicological impact on aquatic animal life and coastal public health. Also discussed are the applicability and advancements of nanomaterials and nano-based biosensors in the detection, prevention, and remediation of diverse pollution in the marine ecosystem.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Mohamed Ali AfaanAhamed
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Xin Zhang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
9
|
Iqbal S, Javed M, Hassan SS, Nadeem S, Akbar A, Alotaibi MT, Alzhrani RM, Awwad NS, Ibrahium HA, Mohyuddin A. Binary Co@ZF/S@GCN S-scheme heterojunction enriching spatial charge carrier separation for efficient removal of organic pollutants under sunlight irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|