1
|
Yan X, Yao Y, Xiao C, Zhang H, Xie J, Zhang S, Qi J, Zhu Z, Sun X, Li J. Shaping Phenolic Resin-Coated ZIF-67 to Millimeter-Scale Co/N Carbon Beads for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:4059. [PMID: 39274907 PMCID: PMC11397324 DOI: 10.3390/molecules29174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Ma Y, Han Y, Yao Y, Zhou T, Sun D, Liu C, Che G, Hu B, Valtchev V, Fang Q. A cobalt-modified covalent organic framework enables highly efficient degradation of 2,4-dichlorophenol in high concentrations through peroxymonosulfate activation. Chem Sci 2024; 15:12488-12495. [PMID: 39118632 PMCID: PMC11304524 DOI: 10.1039/d4sc02462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The development of covalent organic frameworks (COFs) which can rapidly degrade high concentrations of 2,4-dichlorophenol is of great significance for its practical application. In this work, we report a cobalt-doped two-dimensional (2D) COF (JLNU-307-Co) for the ultra-efficient degradation of high concentration 2,4-dichlorophenol (2,4-DCP) by activating peroxymonosulfate (PMS). The JLNU-307-Co/PMS system takes only 3 min to degrade 100% of 50 mg L-1 2,4-DCP and shows excellent catalytic stability in real water. The superoxide radical (O2˙-) and singlet oxygen (1O2) play a major role in the system through capture experiments and electron spin resonance (ESR) tests. Compared to most previously reported catalysts, JLNU-307-Co/PMS showed the highest efficiency to date in degrading 2,4-DCP. This work not only demonstrates the potential of COFs as a catalyst for water environmental treatment, but also provides unprecedented insights into the degradation of organic pollutants.
Collapse
Affiliation(s)
- Yunchao Ma
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Yuhang Han
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Yuxin Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University Siping 136000 China
| | - Dongshu Sun
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University Siping 136000 China
| | - Guangbo Che
- College of Chemistry, Baicheng Normal University Baicheng 137000 China
| | - Bo Hu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Valentin Valtchev
- Qindao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shangdong 266101 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
3
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
4
|
Lu K, Ding T, Zhu M, Chen J, Yue D, Liu X, Fang X, Xia J, Qin Z, Wu M, Shi G. Double pyramid stacked CoO nano-crystals induced by graphene at low temperatures as highly efficient Fenton-like catalysts. Phys Chem Chem Phys 2024; 26:8681-8686. [PMID: 38441213 DOI: 10.1039/d4cp00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Transition metal oxides are widely used as Fenton-like catalysts in the treatment of organic pollutants, but their synthesis usually requires a high temperature. Herein, an all-solid-state synthesis method controlled by graphene was used to prepare a double pyramid stacked CoO nano-crystal at a low temperature. The preparation temperature decreased by 200 °C (over 30% reduction) due to the introduction of graphene, largely reducing the reaction energy barrier. Interestingly, the corresponding degradation rate constants (kobs) of this graphene-supported pyramid CoO nano-crystals for organic molecules after their adsorption were over 2.5 and 35 times higher than that before adsorption and that of free CoO, respectively. This high catalytic efficiency is attributed to the adsorption of pollutants at the surface by supporting graphene layers, while free radicals activated by CoO can directly and rapidly contact and degrade them. These findings provide a new strategy to prepare low carbon-consuming transition metal oxides for highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Kui Lu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Mengxiang Zhu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Dongting Yue
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaoqin Fang
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Junfang Xia
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Zhiyuan Qin
- Shanghai Jingyu Environmental Engineering Co. Ltd., Xiner Road, Shanghai 200439, P. R. China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
5
|
Li Y, Wang CC, Wang FX, Liu XY, Wang P, Wang F, Sun M, Yu B. Efficient pollutant degradation by peroxymonosulfate activated by a Co/Mn metal-organic framework. Dalton Trans 2024; 53:5266-5273. [PMID: 38407245 DOI: 10.1039/d4dt00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this work, a three-dimensional bimetallic metal-organic framework (BMOF), BUC-101 (Co/Mn-H6chhc, H6chhc = cis-1,2,3,4,5,6-cyclohexane-hexacarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture) was synthesized by a one-pot solvothermal method and characterized in detail by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) element mapping analysis. BUC-101 showed excellent catalytic peroxymonosulfate (PMS) activation performance to degrade rhodamine B (RhB) without energy input. In addition, BUC-101 can maintain good stability and recyclability during the PMS activation processes, in which 99.9% RhB degradation efficiencies could be accomplished in 5 operational runs. The possible PMS activation and RhB degradation mechanisms of the BUC-101/PMS system were proposed and affirmed.
Collapse
Affiliation(s)
- Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xing-Yuan Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingyi Sun
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
6
|
Li G, Gu B, Luo Y, Fan G, Yu X. Architecture engineering of Fe/Fe 2O 3@MoS 2 enables highly efficient tetracycline remediation via peroxymonosulfate activation: Critical roles of adsorption capacity and redox cycle regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120210. [PMID: 38290258 DOI: 10.1016/j.jenvman.2024.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Design and synthesis of high-efficiency multicomponent nanostructure for activating peroxymonosulfate (PMS) to destruct emerging antibiotics remains a daunting challenge. We report herein the simplest one-step hydrothermal construction of hierarchical Fe/Fe2O3@MoS2 architecture composed of MoS2 nanosheets integrated commercial Fe2O3 nanoparticles. The fabricated Fe/Fe2O3@MoS2 architecture can be utilized as an efficient PMS activator to destruct tetracycline hydrochloride (TCH) with a removal efficiency of 90.3 % within 40 min, outperforming Fe2O3 nanoparticles, MoS2 nanosheets analogues and many MoS2-based materials. The Fe/Fe2O3@MoS2/PMS works well under various reaction conditions, and SO4•- and 1O2 are identified as major reactive oxygen species. Thirteen intermediates towards TCH destruction are detected via four pathways, and their acute/chronic toxicity and phytotoxicity are assessed. The origins of Fe/Fe2O3@MoS2/PMS system for efficient degrading TCH are ascribed to the synergy catalysis between Fe2O3 and MoS2, which originate from: (a) the exposed Mo4+ sites on catalyst surface facilitating high-speed electron transfer from MoS2 to Fe3+ and accelerating the Fe2+ regeneration; (b) the generated Fe0 serving as an excellent electron donor to jointly promote Fe3+/Fe2+ redox cycle. This study provides a simple way to establish architecture for synergistically promoting PMS-mediated degradation.
Collapse
Affiliation(s)
- Guo Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bingni Gu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yanfei Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Xiaojun Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
8
|
Qian L, Li H, Zhang D, Guo L, Pan W, Zhang J, Xiang M. Prussian blue analogues derived magnetic FeCo@GC material as high-performance metallic peroxymonosulfate activators to degrade tetrabromobisphenol A over a wide pH range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105897-105911. [PMID: 37718365 DOI: 10.1007/s11356-023-29840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Metal-organic frame (MOF) materials can effectively degrade organic pollutants, whereas the MOF is rapidly hydrolysed in water and has poor stability and low reusability. However, in the current advanced oxidation process (AOP) system, the removal effect of pollutants under alkaline condition is not ideal. In this study, a magnetic composite material derived from MOF was synthesised and used as a new catalyst for rapid degradation of tetrabromobisphenol A (TBBPA). Compared to precarbonisation, FeCo@GC formed a conductive graphite carbon skeleton, retained the complete rhombododecahedron structure, had a larger specific surface area and provided more active sites for peroxymonosulfate (PMS) activation. The target pollutant TBBPA (20 mg/L) was completely degraded within 30 min, and the mineralisation rate reached 40.98% in the FeCo@GC (150 mg/L) and PMS (1 mM) systems, owing to the synergistic interaction between Fe, Co and graphite carbon. The reactive oxygen species (ROS) involved in the reaction were determined to be SO4•-, ·OH, 1O2 and O2•- by electron paramagnetic resonance and free radical scavenging experiments, and the 1O2 played a dominant role. Based on the results of LC-MS analysis results, the main degradation pathways of TBBPA involve three mechanisms: the debromination reaction, hydroxylation and cleavage of the benzene ring. In addition, compared with previous AOP systems, FeCo@GC/PMS overcomes the disadvantage of poor degradation effect of TBPPA under alkaline conditions, has a wide range pH (3-11) application and has the best effect on TBBPA degradation under alkaline conditions. FeCo@GC has an excellent cycle performance, with a removal rate of re-calcined material of 88.52% after five cycles. Therefore, FeCo@GC can be used as a promising and efficient catalyst for removing environmental organic pollutants.
Collapse
Affiliation(s)
- Liu Qian
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dengsong Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lin Guo
- Institute for Shanghai Academy of Environmental Sciences, No. 508 Qinzhou Road, Xuhui District, Shanghai, People's Republic of China
| | - Wenxue Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jin Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghui Xiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
9
|
Cheng H, Huang C, Wang P, Ling D, Zheng X, Xu H, Feng C, Liu H, Cheng M, Liu Z. Molybdenum disulfide co-catalysis boosting nanoscale zero-valent iron based Fenton-like process: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 227:115752. [PMID: 36965812 DOI: 10.1016/j.envres.2023.115752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
The conventional Fenton process has the drawbacks of low efficiency of Fe3+/Fe2+ conversion, low utilization of H2O2, and narrow range of pH. In this paper, molybdenum sulfide (MoS2) was used as a co-catalyst to boost the nanoscale zero-valent iron (nZVI) based heterogeneous Fenton-like process for the degradation of Rhodamine B (RhB). The catalytic performance, influences of parameters, degradation mechanism, and toxicity of intermediates were explored. Compared with the conventional like-Fenton process, the existence of MoS2 accelerated the decomposition of H2O2 and the RhB degradation rate constant of MoS2/nZVI/H2O2 reached more than six times that of nZVI/H2O2. In addition, the effective pH range of MoS2/nZVI/H2O2 was broadened to 9.0 with 84.9% of RhB being removed within 15 min. The co-catalytic system of MoS2 and nZVI was stable and had high reusability according to the results of four consecutive runs. Quenching tests and electron paramagnetic resonance (EPR) demonstrated that hydroxyl radical (·OH), superoxide anions (·O2-), and singlet oxygen (1O2) were all involved in MoS2/nZVI/H2O2. Compared with nZVI/H2O2 system, MoS2 not only increased the corrosion of nZVI but also accelerated the conversion of Fe3+/Fe2+. ECOSAR analysis suggested that the overall acute and chronic toxicity of the degradation products decreased after treatment. Hence, this MoS2 co-catalytic nZVI based Fenton-like process can be used as a promising alternative for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
10
|
Jiang M, Xu Z, Zhang T, Zhang X, Liu Y, Liu P, Chen X. Synergistic activation of persulfate by FeS@SBA-15 for imidacloprid degradation: Efficiencies, activation mechanism and degradation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:75595-75609. [PMID: 37222897 DOI: 10.1007/s11356-023-27778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
In this work, FeS supported SBA-15 mesoporous silica catalyst (FeS@SBA-15) was synthesized successfully, characterized and first applied to persulfate (PS) activation for the degradation of imidacloprid in wastewater. The as-prepared 3.5-FeS@SBA-15 presented an impressive imidacloprid removal efficiency of 93.1% and reaction stoichiometric efficiency (RSE) of 1.82% after 5 min, ascribed to the synergetic effects of improved FeS dispersion and abundant surface sites by SBA-15. Electron paramagnetic resonance spectra and quenching experiments proved that both SO4·- and ·OH were produced in FeS@SBA-15/PS system, and SO4·- played a dominant role in the degradation process. The S2- can accelerate the cycling of Fe(III)/Fe(II) during activation and increase the steady-state concentration of Fe(II). More importantly, the constructed heterogeneous system exhibited an efficient and stable catalytic activity over a wide range of pH (3.0-9.0), temperature (283K-313K), inorganic ion (NO3-) and humic acid (1-20 mg/L). Moreover, the density functional theory calculations were conducted to predict the potential reaction sites of imidacloprid. Based on eighteen identified intermediates, four main degradation pathways were proposed: hydroxylation, dechlorination, hydrolysis, and the ring cleavage of the imidazolidine. ECOSAR analysis indicated hydroxylation and dechlorination played a key role in the detoxification of the formed compounds. These findings would provide new insights into the application of FeS@SBA-15 catalyst in wastewater treatment and the removal mechanism of imidacloprid from wastewater.
Collapse
Affiliation(s)
- Mengyun Jiang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xirong Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaochun Chen
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2090-2115. [PMID: 37186617 PMCID: wst_2023_119 DOI: 10.2166/wst.2023.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer. Ecotoxicity analysis requires an understanding of the current status of phthalate pollution, health impacts, exposure routes, and their sources. This review covers five toxic phthalates, occurrences in the aquatic environment, toxicity studies, biodegradation studies, and degradation pathways. It highlights the various advanced oxidation processes like photocatalysis, Fenton processes, ozonation, sonolysis, and modified AOPs used for phthalate removal from the environment.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| | - Mrudula Pulimi
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| |
Collapse
|
12
|
Yang J, Zhang M, Chen M, Zhou Y, Zhu M. Oxygen Vacancies in Piezoelectric ZnO Twin-Mesocrystal to Improve Peroxymonosulfate Utilization Efficiency via Piezo-Activation for Antibiotic Ornidazole Removal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209885. [PMID: 36644889 DOI: 10.1002/adma.202209885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Piezoelectric mesocrystals as defective materials have been demonstrated to possess adsorptive and catalytic properties in redox reactions. However, there is still a lack of research on the quantitative relationship between the defect concentration and the piezocatalytic performance in piezoelectric mesocrystals. Herein, twin-hierarchical structure ZnO piezoelectric mesocrystals are taken with different oxygen-vacancies (OVs) concentrations to quantitatively investigate the effect of defect content on the peroxymonosulfate (PMS) piezo-activation in water purification. The ZnO piezoelectric mesocrystal with moderate OVs concentration exhibits a rapid antibiotic ornidazole (ORZ) pollutants degradation rate (0.034 min-1 ) and achieves a high PMS utilization efficiency (0.162) that exceeds the most state-of-the-art catalytic processes, while excessive OVs suppressed the piezocatalytic performance. Through calculations of electron property and reactants affinity, a quantitative relationship between OVs concentration and piezocatalytic properties is established. The ZnO mesocrystal with moderate OVs concentration realized increased electron delocalization, reduced charge transfer barrier, and enhanced reactants affinity, thus accelerating the kinetics of PMS activation. This work provides theoretical guidance for the application of defect engineering in mesocrystal to realize enhanced piezocatalytic performance.
Collapse
Affiliation(s)
- Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Minxian Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Mengshan Chen
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, P. R. China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
13
|
Zhu J, Wang S, Yang Z, Pan B. Robust polystyrene resin-supported nano-CoFe 2O 4 mediated peroxymonosulfate activation for efficient oxidation of 1-hydroxyethane 1,1-diphosphonic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130281. [PMID: 36334573 DOI: 10.1016/j.jhazmat.2022.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanosized spinel cobalt ferrite (CoFe2O4) shows high performance in peroxymonosulfate (PMS) activation for decontamination in water, but is yet challenged by the easily leached Co(II) with high toxicity. Herein, macroporous polystyrene resin is used as the support to improve the stability of CoFe2O4 nanoparticles during PMS activation. CoFe2O4@S201 exerted high catalytic activity toward PMS activation for oxidation of 1-hydroxyethane 1,1-diphosphonic acid (HEDP), with the apparent rate normalized by Co content 38.2 times higher than that of the unsupported CoFe2O4. Meanwhile, one order of magnitude lower Co leaching (< 2.1 μg L-1) was detected during the catalytic oxidation. The Co(II)-PMS complex was the primary oxidant responsible for the oxidation of HEDP. The catalytic durability and stability of CoFe2O4@S201 for degradation of HEDP in actual wastewater were systematically evaluated in both batch and continuous-flow mode. It is found that the organic resin, which is often considered to be intolerant to oxidation, is rather stable during the non-radical process. The total cobalt leaching of the fresh CoFe2O4@S201 cannot be ignored in the 100-h continuous-flow run. In contrast, much lower cobalt leaching and slightly higher oxidation efficiency were observed for the regenerated CoFe2O4@S201, which might be due to the removal of unreactive and unstable Co sites on the surface in the first trial. The findings shed light on the potential of organic supports for improving the stability and activity of nanosized CoFe2O4 and other nano-catalysts toward practical application.
Collapse
Affiliation(s)
- Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Han Q, Wang M, Sun F, Yu B, Dong Z, Li P, Luo J, Li M, Jin X, Dai Z. Effectiveness and degradation pathways of bisphenol A (BPA) initiated by hydroxyl radicals and sulfate radicals in water: Initial reaction sites based on DFT prediction. ENVIRONMENTAL RESEARCH 2023; 216:114601. [PMID: 36265601 DOI: 10.1016/j.envres.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), one of the widely known endocrine-disrupting chemicals, can be effectively degraded by advanced oxidation processes in water because of the powerful reactive oxygen species. In this study, Fenton, UV/Fenton, and metal ion/peroxymonosulfate (PMS) processes were compared to investigate BPA degradation efficiency and pathways initiated by hydroxyl radicals and sulfate radicals. In contrast to the Fenton system, which only degraded 60% of BPA within 15 min, the UV/Fenton system could degrade greater than 80% of BPA, because more hydroxyl radicals (•OH) were generated under the reduction of Fe3+ to Fe2+. The optimized parameters of the UV/Fenton system were as follows: 8 μmol/L of Fe2+, 80 μmol/L of H2O2, and a pH value of 3.0. As for the metal ion/PMS system, the BPA degradation efficiency was closely associated with the applied metal ions, and the order was as follows: Co2+/PMS (∼100%) > Fe2+/PMS (∼80%) > Cu2+/PMS (∼79%). The degradation pathways of BPA were theoretically interpreted through density functional theory prediction and degradation products during various processes. Two major initial reaction sites (4C and 6C) for •OH initiated using the UV/Fenton system and one initial reaction site (4C) for sulfate radicals (SO4•-) using the metal ion/PMS system were recognized for BPA degradation processes. The degradation products by •OH showed a larger average molecular weight than those by SO4•-. These studies are instructive for the application of different advanced oxidation systems in the treatment process of BPA in wastewater.
Collapse
Affiliation(s)
- Qi Han
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Mingming Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Boping Yu
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Zijun Dong
- College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518048, China.
| | - Pu Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jingwen Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Xingliang Jin
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Zhiguang Dai
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| |
Collapse
|
15
|
Liu H, Huang C, Wang P, Huang S, Yang X, Xu H, Zhu J, Ling D, Feng C, Liu Z. A novel Fe/Mo co-catalyzed graphene-based nanocomposite to activate peroxymonosulfate for highly efficient degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2022; 215:114233. [PMID: 36058268 DOI: 10.1016/j.envres.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A novel 3D α-FeOOH@MoS2/rGO nanocomposite was successfully fabricated by a simple in situ hydrothermal method. It is a highly efficient heterogeneous catalyst in activation of peroxymonosulfate (PMS) for rapid degradation of rhodamine B (RhB), with 99.9% of RhB removed within 20 min. The introduction of rGO contributes to uniform dispersion and sufficient contact of α-FeOOH and MoS2 nanosheets. Highly active Mo(IV) enhances the reduction of Fe(III), improves Fe(III)/Fe(II) conversion and promotes the generation of O21, which ensures an improved catalytic activity. MoS2/rGO hybrid can effectively solve the problem of material reunion and make α-FeOOH exhibit excellent catalytic performance. The α-FeOOH@MoS2-rGO/PMS system is a co-catalytic system based on the active components of α-FeOOH and MoS2. The main reactive oxygen species in the α-FeOOH@MoS2-rGO/PMS system are O21, SO4.- and ⋅O2-, which contribute to a high reactivity over a wide range of pH (5-9). Besides, this system is highly resistant to anions (Cl-, SO42-) and natural organic matter (humic acid), and can be widely used for degradation of common organic pollutants. The α-FeOOH@MoS2/rGO is a promising Fenton-like catalyst for refractory organic wastewater treatment.
Collapse
Affiliation(s)
- Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chonglin Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
16
|
Xie J, Xu P, Liu M, Liu Y, Zhu L, Yu F, Zhang P, Li J, Luo Y, Zhou B. Anchoring phosphorus on in-situ nitrogen-doped biochar by mechanical milling for promoted electron transfer from diclofenac sodium to peroxymonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Novel porous perovskite composite CeO2@LaMnO3/3DOM SiO2 as an effective catalyst for activation of PMS toward oxidation of urotropine. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Tailored design of MXene-like 2D MOF derived carbon/Fe3O4 Fenton-like catalysts towards effective removal of contaminants via size-exclusion effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Electrospinning of ZIF-67 Derived Co-C-N Composite Efficiently Activating Peroxymonosulfate to Degrade Dimethyl Phthalate. WATER 2022. [DOI: 10.3390/w14142248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, an efficient cage-core peroxymonosulfate (PMS) catalyst was synthesized by applying an electrospinning–calcination process to the cobalt–zeolitic imidazole framework (ZIF-67) crystals for the catalytic degradation of dimethyl phthalate (DMP). The morphology and surface properties of the synthesized materials (ZIF-67, Z600 and ZP400/600/800) were well characterized. ZP600 showed great performance for the catalytic degradation of DMP in the initial pH range of 7.5–10.5. The removal rate of DMP could reach 90.4% in 60 min under optimum dosages of reagents (catalyst = 0.1 g/L, PMS = 0.5 mM, DMP = 6 ppm), and the mineralization degree of contaminant could reach 65%. By quenching experiments, it was determined that sulfate radical (SO4−·) and hydroxyl radical (·OH) dominated the degradation process. Moreover, due to the good magnetism, ZP600 could be easily separated from liquid and showed great reusability in five-cycle reaction experiments. Surprisingly, with the cover of cage-like polyacrylonitrile (PAN) fibers, the cobalt leaching amount of ZP600 decreased by about 87%. This study would expand the application of the electrospinning process in the development of functional materials for water purification.
Collapse
|
20
|
Zhang J, Ma Y, Sun Y, Zhu Y, Wang L, Lin F, Ma Y, Ji W, Li Y, Wang L. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: Mechanism, degradation pathway and toxicity. J Colloid Interface Sci 2022; 628:448-462. [DOI: 10.1016/j.jcis.2022.07.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|