1
|
Sun J, Tao J, Huang H, Ma R, Sun S. Promotion of bio-oil production from the microwave pyrolysis of cow dung using pretreated red mud as a bifunctional additive: Parameter optimization, energy efficiency evaluation, and mechanism analysis. ENVIRONMENTAL RESEARCH 2023; 236:116806. [PMID: 37536556 DOI: 10.1016/j.envres.2023.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
To address the issues of high oxygen content and energy consumption in the microwave-assisted pyrolysis of biomass for biofuel production, this study used high-temperature pretreated red mud (RM) as an additive. The pretreated RM exhibited dual functionalities, namely microwave absorption and catalytic properties, during the microwave-assisted pyrolysis of cow dung (CD). This study also evaluated the optimization potential of energy recovery efficiency. The results showed that the addition of pretreated RM significantly increased the oil yield during the microwave-assisted pyrolysis of CD. The highest oil yield (59.63%) was obtained via the microwave-assisted pyrolysis of CD over catalysis with RM pretreated at 750 °C (RM750). Through the optimization of the RM750-to-CD mixing ratio, optimal oil quality and energy recovery efficiency were achieved. At a mixing ratio of 1:1, the pyrolysis oil featured the highest aromatic hydrocarbon content and lowest acid content. The high-temperature pretreatment of RM increased the Fe2O3 content, which enhanced the dielectric properties and magnetic loss ability of the reactants. This resulted in localized high temperatures and the formation of "hot spots," which can promote the deoxygenation and hydrogenation reactions of oil. Consequently, the lower heating rate of oil increased from 35.12 to 40.11 MJ kg-1. The released oxygen escaped in the form of CO. In addition, pyrolytic char was used as an in situ microwave absorbing material owing to its increased Fe2O3 content and graphitization degree, leading to an increase in energy recovery efficiency from 4.71% to 9.98%. This study provides valuable guidance for the efficient utilization of diversified solid wastes and demonstrates the potential application of microwave-assisted pyrolysis technology in the resource utilization of solid wastes.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinlin Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huimin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Li S, Meenakshi V, Nithya S, Alharbi SA, Salmen SH, Shanmuganathan R, Zhang L, Xia C. Impact of the combined effect of seawater exposure with wastewater and Fe 2O 3 nanoparticles on Chlorella vulgaris microalgae growth, lipid content, biochar, and bio-oil production. ENVIRONMENTAL RESEARCH 2023:116300. [PMID: 37268207 DOI: 10.1016/j.envres.2023.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Microalgae is one the promising source of energy for the production of biofuel and other value-added products to replace the existing conventional fossil fuels. However, low lipid content and poor cell harvesting are the key challenges. Based on the growth conditions the lipid productivity will be affected. The current study examines the mixtures of both wastewater and NaCl on the microalgae growth was studied. The microalgae used for conducting the tests were Chlorella vulgaris microalgae. Mixtures of the wastewater was prepared under the different concentrations of the seawater, classified as S0%, S20%, and S40%. The growth of microalgae was studied in the presence of these mixtures, and the addition of Fe2O3 nanoparticles was included to stimulate the growth. The results showed that increasing the salinity in the wastewater resulted in decreased biomass production, but significantly increased lipid content compared to S0%. The highest lipid content was recorded at S40%N with 21.2%. The Highest lipid productivity was also witnessed for S40% with 45.6 mg/Ld. The cell diameter was also found to increase with increasing salinity content in the wastewater. The addition of Fe2O3 nanoparticles in the seawater was found to enhance the productivity of the microalgae extensively, resulting in 9.2% and 6.15% increased lipid content and lipid productivity respectively compared to conventional cases. However, the inclusion of the nanoparticles slightly increased the zeta potential of microalgal colloids, with no noticeable effects on the cell diameter or bio-oil yields. Based on these findings, Chlorella vulgaris was identified as a suitable candidate for treating wastewater with high salinity exposure.
Collapse
Affiliation(s)
- Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - V Meenakshi
- Faculty of Engineering, Sathyabama Institute of Science and Technology, India
| | - S Nithya
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 053, Tamil Nadu, India.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rajasree Shanmuganathan
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research, Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
3
|
Yuan Y, Wu Y, Suganthy N, Shanmugam S, Brindhadevi K, Sabour A, Alshiekheid M, Lan Chi NT, Pugazhendhi A, Shanmuganathan R. Biosynthesis of zirconium nanoparticles (ZrO2 NPs) by Phyllanthus niruri extract: Characterization and its photocatalytic dye degradation activity. Food Chem Toxicol 2022; 168:113340. [DOI: 10.1016/j.fct.2022.113340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023]
|