1
|
Pennington AF, Smith MR, Chuke SO, Cornwell CR, Allwood PB, Courtney JG. Effects of Blood Lead Levels <10 µg/dL in School-Age Children and Adolescents: A Scoping Review. Pediatrics 2024; 154:e2024067808F. [PMID: 39352036 DOI: 10.1542/peds.2024-067808f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
CONTEXT Lead exposures among school-age children are a major public health issue. Although the harmful effects of lead exposure during the first years of life are well known, there is not as much understanding of the effects of low levels of lead exposure during later childhood. OBJECTIVES To review the effects of blood lead levels (BLLs) <10 µg/dL in school-age children and adolescents. DATA SOURCES We searched Medline, Embase, Global health, CINAHL, Scopus, and Environmental Science Collection databases between January 1, 2000, and May 11, 2023. STUDY SELECTION We included peer-reviewed English-language articles that presented data on the effects of BLLs <10 µg/dL in individuals ages 5 through 18 years. DATA EXTRACTION Data on country, population, analytic design, sample size, age, BLLs, outcomes, covariates, and results were extracted. RESULTS Overall, 115 of 3180 screened articles met the inclusion criteria. The reported mean or median BLL was <5 µg/dL in 98 articles (85%). Of the included articles, 89 (77%) presented some evidence of an association between BLLs <10 µg/dL during school age and detrimental outcomes in a wide range of categories. The strongest evidence of an association was for the outcomes of intelligence quotient and attention-deficit/hyperactivity disorder diagnoses or behaviors. LIMITATIONS Few articles controlled for BLLs at age <5 years, limiting conclusions about the relation between later BLLs and outcomes. CONCLUSIONS BLLs <10 µg/dL in school-age children and adolescents may be associated with negative outcomes. This review highlights areas that could benefit from additional investigation.
Collapse
Affiliation(s)
- Audrey F Pennington
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Madison R Smith
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Stella O Chuke
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Cheryl R Cornwell
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Paul B Allwood
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| | - Joseph G Courtney
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta
| |
Collapse
|
2
|
Dai Y, Halabicky OM, Ji X, Liu J. Childhood lead exposure and sleep problems in adolescents: a longitudinal cohort study. Int Arch Occup Environ Health 2024:10.1007/s00420-024-02099-3. [PMID: 39277560 DOI: 10.1007/s00420-024-02099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Childhood lead exposure is linked to poorer neurobehavioral function in adolescence, but the relationship between lead and adolescent sleep health remains inconsistent. This study aimed to investigate concurrent and longitudinal associations between lead exposure and multiple sleep health domains in adolescents. METHODS A total of 972 adolescents from China Jintan Child Cohort were included in analyses. The Blood lead levels (BLLs) were assessed in two Waves, at ages 3-5 years (mean 6.50 ± 2.76 μg/dL) and 11-13 years (mean 3.12 ± 1.17 μg/dL). Sleep problems at age 11-13 were parent-reported via the Child Sleep Health Questionnaire (CSHQ) and self-reported by adolescents using the Pittsburgh Sleep Quality Index (PSQI). RESULTS Both early and later BLLs were associated positively with parental reported sleep problems, including sleep onset delay, night waking, short duration, parasomnias, and disordered breathing. Sex-stratified analyzes showed that most adjusted associations between two-Wave BLLs and sleep outcomes (CSHQ and PSQI) remained statistically significant in males, with a minor increase in the magnitude of these associations. The association between Wave II BLLs and shorter self-reported sleep duration was only statistically significant in female adolescents. Compared to children with consistently low BLLs at both ages, those with persistently high BLLs at both ages had significantly shorter parental-reported sleep duration and worse sleep onset delay. CONCLUSION Findings suggest that both early and later childhood lead exposures link to more adolescent sleep problems, with recent BLLs showing stronger associations with poor adolescent sleep health reported by their parents.
Collapse
Affiliation(s)
- Ying Dai
- School of Nursing, University of Pennsylvania, 418 Curie Blvd., Room 426, Claire M. Fagin Hall, Philadelphia, PA, 19104-6096, USA
| | | | - Xiaopeng Ji
- School of Nursing, College of Health Sciences, University of Delaware, Newark, USA
| | - Jianghong Liu
- School of Nursing, University of Pennsylvania, 418 Curie Blvd., Room 426, Claire M. Fagin Hall, Philadelphia, PA, 19104-6096, USA.
| |
Collapse
|
3
|
Krzeczkowski JE, Hall M, Saint-Amour D, Oulhote Y, McGuckin T, Goodman CV, Green R, Muckle G, Lanphear B, Till C. Prenatal fluoride exposure, offspring visual acuity and autonomic nervous system function in 6-month-old infants. ENVIRONMENT INTERNATIONAL 2024; 183:108336. [PMID: 38064923 PMCID: PMC10981044 DOI: 10.1016/j.envint.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Prenatal fluoride exposure can have adverse effects on children's development; however, associations with visual and cardiac autonomic nervous system functioning are unknown. We examined associations between prenatal fluoride exposure and visual acuity and heart rate variability (HRV) in 6-month-old infants. METHODS We used data from Canadian mother-infant pairs participating in the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. We estimated prenatal fluoride exposure using: i) fluoride concentration in drinking water (mg/L), ii) maternal urinary fluoride adjusted for specific gravity (MUFSG; mg/L) and averaged across pregnancy, and iii) maternal fluoride intake (µg/kg/day) from consumption of water, tea, and coffee, adjusted for maternal body weight (kg). We used multivariable linear regression to examine associations between each measure of fluoride exposure and Teller Acuity Card visual acuity scores (n = 435) and assessed HRV (n = 400) using two measures: root mean square of successive differences (RMSSD) and the standard deviation of N-N intervals (SDNN) measured at 6-months of age. RESULTS Median (IQR) values for water fluoride, MUFSG, and daily fluoride intake were 0.20 (IQR: 0.13-0.56) mg/L; 0.44 (0.28-0.70) mg/L and 4.82 (2.58-10.83) µg/kg/day, respectively. After adjustment for confounding variables, water fluoride concentration was associated with poorer infant visual acuity (B = -1.51; 95 % CI: -2.14,-0.88) and HRV as indicated by lower RMSSD (B = -1.60; 95 % CI: -2.74,-0.46) but not SDNN. Maternal fluoride intake was also associated with poorer visual acuity (B = -0.82; 95 % CI: -1.35,-0.29) and lower RMSSD (B = -1.22; 95 % CI: -2.15,-0.30). No significant associations were observed between MUFSG and visual acuity or HRV. CONCLUSION Fluoride in drinking water was associated with reduced visual acuity and alterations in cardiac autonomic function in infancy, adding to the growing body of evidence suggesting fluoride's developmental neurotoxicity.
Collapse
Affiliation(s)
- John E Krzeczkowski
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.
| | - Meaghan Hall
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Dave Saint-Amour
- Faculté de médecine - Département d'ophtalmologie, Université de Montréal, Montréal, Québec, Canada
| | - Youssef Oulhote
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sina, New York, NY, USA
| | - Taylor McGuckin
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Carly V Goodman
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Rivka Green
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Gina Muckle
- Centre de recherche du CHU de Québec-Université Laval, Québec, Canada; École de Psychologie, Université Laval, Québec, Québec, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Christine Till
- Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Halabicky OM, Téllez-Rojo MM, Miller AL, Goodrich JM, Dolinoy DC, Hu H, Peterson KE. Associations of prenatal and childhood Pb exposure with allostatic load in adolescence: Findings from the ELEMENT cohort study. ENVIRONMENTAL RESEARCH 2023; 235:116647. [PMID: 37442254 PMCID: PMC10839745 DOI: 10.1016/j.envres.2023.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The biological pathways which link lead (Pb) and long-term outcomes are unclear, though rodent models and a few human studies suggest Pb may alter the body's stress response systems, which over time, can elicit dysregulated stress responses with cumulative impacts. This study examined associations between prenatal and early childhood Pb exposure and adolescent allostatic load, an index of an individual's body burden of stress in multiple biological systems, and further examined sex-based associations. Among 391 (51% male) participants in the ELEMENT birth cohort, we related trimester-specific maternal blood Pb, 1-month postpartum maternal tibia and patella Pb, and child blood Pb at 12-24 months to an allostatic load index in adolescence comprised of biomarkers of cardiovascular, metabolic, neuroendocrine, and immune function. The results were overall mixed, with prenatal exposure, particularly maternal bone Pb, being positively associated with allostatic load, and early childhood Pb showing mixed results for males and females. In adjusted Poisson regression models, 1 mcg/g increase in tibia Pb was associated with a 1% change in expected allostatic load (IRR = 1.01; 95%CI 0.99, 1.02). We found a significant Pb × sex interaction (IRR = 1.05; 95%CI 1.01, 1.10); where males saw an increasing percent change in allostatic load as 12 month Pb levels increased compared to females who saw a decreasing allostatic load. Further examination of allostatic load will facilitate the determination of potential mechanistic pathways between developmental toxicant exposures and later-in-life cardiometabolic outcomes.
Collapse
Affiliation(s)
- O M Halabicky
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - M M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - A L Miller
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - J M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - D C Dolinoy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - H Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Glenn AL, Li Y, Liu J. Association between lower-level of environmental lead exposure and reactive and proactive aggression in youth: Sex differences. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:268-281. [PMID: 36662652 PMCID: PMC10234437 DOI: 10.1080/26896583.2022.2157183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lead exposure during childhood has been associated with a variety of negative outcomes, including antisocial/aggressive behavior. However, different subtypes of antisocial behavior have been found to have different neurobiological correlates, and it is unclear whether lead exposure is related to specific subtypes of aggressive behavior. The objective of the study was to examine relationships between childhood blood lead levels (BLL) and proactive and reactive aggression. Further, given prior findings of sex differences in the effects of lead exposure, we examine whether there are sex differences in these relationships. In a sample of 818 youth (47.2% girls) ages 10-13 in China, we assessed BLL and administered the Reactive Proactive Aggression Questionnaire. Results show that BLLs were associated with reactive, but not proactive aggression. There was a significant interaction between BLL and sex in predicting aggression; boys with higher BLL scored higher in both proactive and reactive aggression than boys with lower BLL, but these differences were not present for girls. These findings suggest that lead exposure may have broad effects on antisocial behavior, but that boys may be more susceptible than girls. These findings may provide insights to identifying protective factors that could be potential targets for intervention.
Collapse
Affiliation(s)
- Andrea L. Glenn
- University of Alabama, Center for Youth Development and Intervention, Department of Psychology, Tuscaloosa, AL, USA
| | - Yuli Li
- University of Pennsylvania School of Nursing, Philadelphia, PA, USA
- Shandong University School of Nursing and Rehabilitation, Jinan, Shandong, P.R.China
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA, USA
| |
Collapse
|
6
|
Viera E, Kaschel H, Valencia C. Heart Rate Variability Control Using a Biofeedback and Wearable System. SENSORS (BASEL, SWITZERLAND) 2022; 22:7153. [PMID: 36236257 PMCID: PMC9572135 DOI: 10.3390/s22197153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Heart rate variability is an important physiological parameter in medicine. This parameter is used as an indicator of physiological and psychological well-being and even of certain pathologies. Research on biofeedback integrates the fields of biological application (physiological behavior), system modeling, and automated control. This study proposes a new method for modeling and controlling heart rate variability as heart rate acceleration, a model expressed in the frequency domain. The model is obtained from excitation and response signals from heart rate variability, which through the instrumental variables method and the minimization of a cost function delivers a transfer function that represents the physiological phenomenon. This study also proposes the design of an adaptive controller using the reference model. The controller controls heart rate variability based on the light actuators designed here, generating a conditioned reflex that allows individuals to self-regulate their state through biofeedback, synchronizing this action to homeostasis. Modeling is conducted in a target population of middle-aged men who work as firefighters and forest firefighters. This study validates the proposed model, as well as the design of the controllers and actuators, through a simple experiment based on indoor cycling. This experiment has different segments, namely leaving inertia, non-controlled segment, and actively controlled segment.
Collapse
|