1
|
Belay MH, Robotti E, Ghignone A, Fabbris A, Brandi J, Cecconi D, Masini MA, Dondero F, Marengo E. Sensitive and accurate determination of 32 PFAS in human serum using online SPE-UHPLC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136780. [PMID: 39667152 DOI: 10.1016/j.jhazmat.2024.136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Per- and polyfluoroalkyl substances' (PFAS) extreme persistence has been linked to many adverse effects on human health including increased risk of certain cancers. This study presents the development and validation of a new, highly sensitive method for the quantification of 32 PFAS in human serum using online solid-phase extraction (SPE) coupled with ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Legacy and emerging PFAS were targeted. Main steps of sample pretreatment include protein precipitation (PP), pellet rinsing, centrifugation, preconcentration through solvent evaporation, and online SPE using a weak anion-exchange polymeric sorbent. The PP and pellet-rinsing procedures were optimized through a comprehensive exploration of solvent combinations. Following this, a pretreatment that offers the best compromise for the targeted PFAS was identified using principal component analysis. The method demonstrated excellent linearity (R² = 0.977-0.997) with limits of quantification ranging from 8.9 to 27 ng/L, 5 to 15 times lower than previous methods. Precision (intraday 2.6-14.0 % and interday 1.3-11.0 % relative standard deviation) and accuracy (recoveries 72.7-106 %) were robust. The method was validated in accordance with ISO/IEC 17025 and successfully applied to five human serum samples, confirming its suitability for high-throughput profiling of PFAS in biomonitoring studies. This method is the first to use online SPE for the simultaneous determination of a broad range of PFAS, including ether congeners such as perfluoro(2-ethoxyethane) sulfonic acid and Nafion byproduct 2. Furthermore, control charts were employed to assess instrument performance during routine analysis and implement necessary actions.
Collapse
Affiliation(s)
- Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; Department of Chemistry, Mekelle University, P. O. Box 231, Mekelle, Ethiopia
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.
| | - Arianna Ghignone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alessia Fabbris
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Maria Angela Masini
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Francesco Dondero
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
2
|
Jain AK, Busgang SA, Gennings C, Yates KP, Schwimmer JB, Rosenthal P, Murray KF, Molleston JP, Scheimann A, Xanthakos SA, Behling CA, Carpenter D, Fishbein M, Neuschwander-Tetri BA, Tonasia J, Vos MB. Environmental toxicants modulate disease severity in pediatric metabolic dysfunction-associated steatohepatitis. J Pediatr Gastroenterol Nutr 2024; 79:943-953. [PMID: 39282813 DOI: 10.1002/jpn3.12346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is common in children. We hypothesized environmental toxins could drive progression to metabolic dysfunction-associated steatohepatitis (MASH), and assayed serum toxins and metabolites in children with histologically characterized MASLD/MASH. METHODS Environmental chemicals, common in household items, perfluoroalkyl substances (PFAS), polybrominated flame retardants (polybrominated diphenyl ethers [PBDEs]), and metabolic profiles were assayed in children enrolled in the multicenter NASH Clinical Research Network Pediatric Database 2. Mixture models, using repeated holdout weighted quantile sum regression (WQSrh) were run in addition to single chemical/metabolite logistic regression. For metabolomic analyses, random subset version of WQSrh was used for the large number of predictors versus participants. Nominal and false discovery rate (FDR) p-values (two-sided) were computed. RESULTS Four hundred and thirty-five children distributed across MASH (n = 293) and MASLD (n = 142), with 304 (69.9%) males. Mean (standard deviation) for Nonalcoholic Steatohepatitis Score (NAS) and alanine aminotransferase (ALT) for MASLD were 3.1 (1.0), 67.9 (43.4), and for MASH 4.2 (1.4), 144 (121). There was an inverse association between PFAS/PBDE mixture and MASH versus MASLD, lobular inflammation (p = 0.026), NAS (p = 0.009, FDR p = 0.04), and log-transformed ALT (p = 0.005, FDR p = 0.025) driven by perfluorohexane sulfonate (PFHXS). Metabolites from positive hydrophilic interaction liquid chromatography mode, biliverdin (p = 0.002) and 1-methylhistidine (associated with meat ingestion, p = 0.02) and reverse phase negative mode, hippuric acid (solvent exposure, p = 0.022) significantly associated with MASH. CONCLUSIONS Significant negative PFAS/PBDE mixture effect and odds of MASH were dominated by PHFXS. Several metabolites are significantly associated with MASH which inform mechanistic pathways and could drive key therapeutic and diagnostic strategies in children.
Collapse
Affiliation(s)
- Ajay K Jain
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saint Louis University, St. Louis, Missouri, USA
| | - Stefanie A Busgang
- HHEAR Data Center, Icahn School of Medicine at Mount Sinai, Statistical Services and Methods Development Resource, New York, New York, USA
| | - Chris Gennings
- HHEAR Data Center, Icahn School of Medicine at Mount Sinai, Statistical Services and Methods Development Resource, New York, New York, USA
| | - Katherine P Yates
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, UC San Diego, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Philip Rosenthal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, San Francisco Benioff Children's Hospital, University of California, San Francisco, California, USA
| | - Karen F Murray
- Pediatrics Institute, Cleveland Clinic and Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Jean P Molleston
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Ann Scheimann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stavra A Xanthakos
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cynthia A Behling
- Department of Pediatrics, Division of Gastroenterology, UC San Diego, La Jolla, California, USA
- Department of Gastroenterology, Pacific Rim Pathology, San Diego, California, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Mark Fishbein
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - James Tonasia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Miriam B Vos
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Jia X, Liu W, Ling X, Li J, Ji J, Wang B, Zhao M. Sex and obesity influence the relationship between perfluoroalkyl substances and lean body mass: NHANES 2011-2018. Heliyon 2024; 10:e35888. [PMID: 39319151 PMCID: PMC11419868 DOI: 10.1016/j.heliyon.2024.e35888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Polyfluoroalkyl substances (PFAS) are known endocrine disruptors, that have been the subject of limited research regarding their impact on human lean body mass. The aim of this study was to investigate the effects of PFAS exposure on lean body mass. Methods We performed a cross-sectional data analysis involving 1022 adolescents and 3274 adults from the National Health and Nutrition Examination Survey (NHANES) 2011-2018, whose lean body mass was measured by dual-energy X-ray absorptiometry. The lean mass index (LMI) was calculated as lean body mass dividing by the square of height. The association between PFAS and LMI was examined through a multivariate-adjusted weighted generalized linear model. Moreover, weighted quantile sum (WQS) regression models were employed to futher examine the relationship between the mixture of PFAS and LMI. Results Regression analyses revealed an inverse correlation between PFAS exposure and LMI after adjusting for potential covariates. Adults with higher serum PFAS concentrations manifested a reduction in whole LMI ( β = -0.193, 95 % confidence interval (CI): -0.325 to -0.06). Notably, this correlation was particularly significant in adult females and individuals with obesity, and it was observed across diverse anatomical regions, including lower limbs, right arm, trunk, and whole lean body mass. In adult females, the association between PFAS and whole LMI was statistically significant ( β = -0.294, 95 % CI: -0.495 to -0.094), and a similar trend was found in obese individuals ( β = -0.512, 95 % CI: -0.762 to -0.261). WQS regression analyses supported the results obtained from weighted linear regression analyses. Conclusions Our study suggests that exposure to PFAS, whether individually or in combination, is associated with decreased lean body mass in specific body areas, with sex and obesity serving as major influencing factors.
Collapse
Affiliation(s)
- Xue Jia
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wenhui Liu
- Department of Informat and Data Anal Lab, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Juan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
4
|
Ezeorba TPC, Okeke ES, Nwankwo CE, Emencheta SC, Enochoghene AE, Okeke VC, Ozougwu VEO. Emerging eco-friendly technologies for remediation of Per- and poly-fluoroalkyl substances (PFAS) in water and wastewater: A pathway to environmental sustainability. CHEMOSPHERE 2024; 364:143168. [PMID: 39181463 DOI: 10.1016/j.chemosphere.2024.143168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are rampant, toxic contaminants from anthropogenic sources, called forever chemicals for their recalcitrance. Although banned in several parts of the world for public health implications, including liver, kidney, and testicular diseases, PFAS are abundant in water sources due to easy dispersion. With chemical properties resulting from strong hydrophobic bonds, they defile many physicochemical removal methods. Though adsorption processes such as granular activated carbon (GAC) are widely used, they are marred by several limitations, including cost and secondary contamination. Thus, eco-friendly methods involving a synergy of the removal principles have been preferred for ease of use, cost-effectiveness, and near-zero effect on the environment. We present novel eco-friendly methods as the solution to PFAS remediation towards environmental sustainability. Current eco-friendly methods of PFAS removal from water sources, including electrocoagulation, membrane/filtration, adsorption, and phytoremediation methods, were highlighted, although with limitations. Novel eco-friendly methods such as microbial fuel cells, photoelectrical cells, and plasma treatment offer solutions to PFAS remediation and are quite efficient in terms of cost, result, and environmental sustainability. Overall, the successful integration of eco-friendly techniques in a seamless manner ensures the desired result. We also present a balanced position on the ecosystem impact of these ecofriendly methods, noting the successes towards environmental sustainability while exposing the gaps for further research.
Collapse
Affiliation(s)
- Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Stephen Chijioke Emencheta
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Veronica Chisom Okeke
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Vincent E O Ozougwu
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
| |
Collapse
|
5
|
Fischer F, Pierzchalski A, Riesbeck S, Aldehoff AS, Castaneda-Monsalve VA, Haange SB, von Bergen M, Rolle-Kampczyk UE, Jehmlich N, Zenclussen AC, Herberth G. An in vitro model system for testing chemical effects on microbiome-immune interactions - examples with BPX and PFAS mixtures. Front Immunol 2024; 15:1298971. [PMID: 38953021 PMCID: PMC11215145 DOI: 10.3389/fimmu.2024.1298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sarah Riesbeck
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Burdette T, Yakimavets V, Panuwet P, Ryan PB, Barr DB, Salamova A. Per- and polyfluoroalkyl substances (PFAS) in senior care facilities and older adult residents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172316. [PMID: 38593875 PMCID: PMC11075449 DOI: 10.1016/j.scitotenv.2024.172316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.
Collapse
Affiliation(s)
- Tret Burdette
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana B Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Schillemans T, Donat-Vargas C, Åkesson A. Per- and polyfluoroalkyl substances and cardiometabolic diseases: A review. Basic Clin Pharmacol Toxicol 2024; 134:141-152. [PMID: 37817473 DOI: 10.1111/bcpt.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of persistent and widespread environmental pollutants that represent a high concern for human health. They have been shown to be associated with several important physiological processes such as lipid metabolism and the immune system. Consequently, PFAS are suspected to play a role in cardiometabolic disease development. However, the evidence regarding associations between PFAS and overt cardiovascular disease and type 2 diabetes remains limited and inconsistent. To address this, we conducted a review of the epidemiological evidence. A deeper understanding of potential underlying molecular mechanisms may help to explain inconsistencies in epidemiological findings. Thus, to gain more mechanistic insight, we also summarized evidence from omics and laboratory studies into an adverse outcome pathway framework. Our observations indicate the potential for associations of PFAS with multiple molecular pathways that could have opposite associations with disease risk, which could be further modified by mixture composition, lifestyle factors or genetic polymorphisms. This identifies the need for exposome studies considering mixture effects, the use of multi-omics data to gain insight in relevant pathways and the integration of epidemiological and laboratory studies to enhance mechanistic understanding and causal inference. Improved comprehension is essential for environmental health risk assessments.
Collapse
Affiliation(s)
- Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Lertassavakorn T, Pholphana N, Rangkadilok N, Suriyo T, Teeyapant P, Satayavivad J. Method Validation for Quantification of PFOS and PFOA in Human Plasma and a Pilot Study in Blood Donors from Thai Red Cross Society. TOXICS 2023; 11:1015. [PMID: 38133417 PMCID: PMC10747079 DOI: 10.3390/toxics11121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Information regarding per- and polyfluorinated substances concentrations in biological samples from the Thai population was still lacking. A sensitive bioanalytical method was developed and validated for the quantification of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) levels in human plasma. Simple protein precipitation and LC-MS/MS techniques were used with stable isotope internal standards of 13C8-PFOS and 13C8-PFOA. The validated method followed the ICH bioanalytical validation guideline, and the results showed good accuracy, precision, and reproducibility. The validated analytical method was then applied to determine PFOS and PFOA concentrations in 50 human plasma samples from the National Blood Center, Thai Red Cross Society. The concentrations were found to be in ranges of <0.91-6.27 ng/mL for PFOS and <0.49-2.72 ng/mL for PFOA. PFOS was also measured separately for its isomers, and the geometric means of the linear isomer (L-PFOS) and branched isomer (br-PFOS) in plasma samples were at 1.85 and 0.41 ng/mL, respectively. Both PFOS and PFOA concentrations were lower in comparison to previous reports from other countries. The present study showed the application of our reliable method to determine PFOS and PFOA in biological samples in order to monitor the human exposure of both chemicals in Thailand.
Collapse
Affiliation(s)
- Teerapong Lertassavakorn
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; (T.L.); (N.P.); (N.R.); (T.S.)
| | - Nanthanit Pholphana
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; (T.L.); (N.P.); (N.R.); (T.S.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Nuchanart Rangkadilok
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; (T.L.); (N.P.); (N.R.); (T.S.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; (T.L.); (N.P.); (N.R.); (T.S.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Punthip Teeyapant
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand;
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; (T.L.); (N.P.); (N.R.); (T.S.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
- Environmental Toxicology Program, Chulabhorn Graduate Institute (CGI), Bangkok 10210, Thailand
| |
Collapse
|
9
|
Neto G, Bobak M, Gonzalez-Rivas JP, Klanova J. The Influence of Adiposity Levels on the Relation between Perfluoroalkyl Substances and High Depressive Symptom Scores in Czech Adults. TOXICS 2023; 11:946. [PMID: 37999598 PMCID: PMC10674478 DOI: 10.3390/toxics11110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The extensive use and bioaccumulation of Perfluoroalkyl Substances (PFAS) over time raise concerns about their impact on health, including mental issues such as depression. This study aims to evaluate the association between PFAS and depression. In addition, considering the importance of PFAS as an endocrine disruptor and in adipogenesis, the analyses will also be stratified by body fat status. A cross-sectional study with 479 subjects (56.4% women, 25-89 years) was conducted. Four PFAS were measured: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The Poisson regression model was applied using robust error variances. The fully adjusted model included age, sex, educational level, income, smoking, physical activity, body fat percentage, and the questionnaire to assess depression. The prevalence of depression and high body fat was 7.9% and 41.1%, respectively. Only PFOA was significantly associated with depression in the entire sample (prevalence rate (PR): 1.91; confidence interval (CI95%): 1.01-3.65). However, in the group with normal adiposity, PFOA (3.20, CI95%: 1.46-7.01), PFNA (2.54, CI95%: 1.29-5.00), and PFDA (2.09, CI95%: 1.09-4.00) were also significant. Future research should investigate the role of obesity as well as the biological plausibility and possible mechanisms increasing the limited number of evidences between PFAS and depression.
Collapse
Affiliation(s)
- Geraldo Neto
- International Clinical Research Center (ICRC), St. Anne’s University Hospital (FNUSA), 65691 Brno, Czech Republic;
| | - Martin Bobak
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (M.B.); (J.K.)
- Research Department of Epidemiology and Public Health, University College London, London WC1H 9BT, UK
| | - Juan P. Gonzalez-Rivas
- International Clinical Research Center (ICRC), St. Anne’s University Hospital (FNUSA), 65691 Brno, Czech Republic;
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02138, USA
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas 3001, Venezuela
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (M.B.); (J.K.)
| |
Collapse
|
10
|
Dunder L, Salihovic S, Elmståhl S, Lind PM, Lind L. Associations between per- and polyfluoroalkyl substances (PFAS) and diabetes in two population-based cohort studies from Sweden. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:748-756. [PMID: 36964247 PMCID: PMC10541316 DOI: 10.1038/s41370-023-00529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suggested to contribute to the development of metabolic diseases such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). However, evidence from epidemiological studies remain divergent. The aim of the present study was to evaluate associations between PFAS exposure and prevalent diabetes in a cross-sectional analysis and fasting glucose in a longitudinal analysis. METHODS In 2373 subjects aged 45-75 years from the EpiHealth study, three PFAS; perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were analyzed in plasma together with information on prevalent diabetes. Participants in the PIVUS study (n = 1016 at baseline, all aged 70 years) were followed over 10 years regarding changes in plasma levels of six PFAS; PFHxS, PFOA, PFOS, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), and changes in plasma levels of fasting glucose. RESULTS In the EpiHealth study, no overall associations could be observed between the levels of PFOA, PFOS or PFHxS and prevalent diabetes. However, there was a significant sex-interaction for PFOA (p = 0.02), and an inverse association could be seen between PFOA (on a SD-scale) and prevalent diabetes in women only (OR: 0.71, 95% CI: 0.52, 0.96, p-value: 0.02). This association showed a non-monotonic dose-response curve. In the PIVUS study, inverse relationships could be observed between the changes in levels (ln-transformed) of PFOA and PFUnDA vs the change in fasting glucose levels (ln-transformed) over 10 years (p = 0.04 and p = 0.02, respectively). As in EpiHealth, these inverse associations were significant only in women (PFOA: β: -0.03, p = 0.02, PFUnDA: β: -0.03, p = 0.03). IMPACT Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to unfavorable human health, including metabolic disorders such as obesity, diabetes and non-alcoholic fatty liver disease. However, results from in vivo, in vitro and epidemiological studies are incoherent. The aim of the present study was therefore to investigate associations between PFAS and diabetes in a cross-sectional study and glucose levels in a longitudinal study. Results show inverse associations in women only. Results also display non-monotonic dose response curves (i.e., that only low levels of PFOA are related to higher probability of prevalent diabetes). This suggests that sex differences and complex molecular mechanisms may underlie the observed findings. A better understanding of the factors and molecular mechanisms contributing to such differences is recognized as an important direction for future research. CONCLUSIONS PFOA was found to be inversely related to both prevalent diabetes and changes in plasma glucose levels among women only. Thus, our findings suggest there are sex differences in the inverse relationship of PFOA and type 2 diabetes and glucose levels.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Wang T, Xu H, Guo Y, Guo Y, Guan H, Wang D. Perfluorodecanoic acid promotes high-fat diet-triggered adiposity and hepatic lipid accumulation by modulating the NLRP3/caspase-1 pathway in male C57BL/6J mice. Food Chem Toxicol 2023; 178:113943. [PMID: 37451596 DOI: 10.1016/j.fct.2023.113943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Perfluorodecanoic acid (PFDA), a chemical contaminant, may casue became obesity, which makes it a public health concern. In this study, we investigated the effects of PFDA on adiposity development and hepatic lipid accumulation in mice fed with a high-fat diet (HFD). Animals were assigned to two diet treatments (low-fat and high-fat); and PFDA was administered through drinking water for 12 weeks. The contaminant promoted body weight gain and adiposity in HFD-fed mice. Moreover, HFD-fed mice exposed to PFDA had impaired glucose metabolism, inflammation and hepatic lipid accumulation compared to mice fed HFD alone. PFDA activated the expression of hepatic NLRP3 and caspase-1, and induced that of SREBP-1c expression in the liver of HFD-fed mice. PFDA exposure in HFD-fed mice significantly inhibited hepatic AMPK expression than animals fed HFD without PFDA exposure. Furthermore, MCC950, an NLRP3 inhibitor, suppressed the upregulation of NLRP3 and caspase-1 expression, and inhibited the expression of SREBP-1c and the accumulation of hepatic lipid in mice exposed to PFDA. Thus, PFDA may enhance HFD-induced adiposity and hepatic lipid accumulation through the NLRP3/caspase-1 pathway. This contaminant may be a key risk factor for obesity development in individuals consuming high-fat foods, particularly Western diet.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Yu Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| |
Collapse
|
12
|
Jain RB, Ducatman A. Factors affecting serum PFAS concentrations among US females with surgically and naturally induced menopause: data from NHANES 2003-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84705-84724. [PMID: 37369902 DOI: 10.1007/s11356-023-28395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Sex hormones influence excretion of the biopersistent per-and polyfluoroalkyl substances (PFAS) in rodents, but such influences in human studies are less clear. Data from National Health and Nutrition Examination Survey (NHANES) for 2003-2018 for US females aged ≥ 20 years who reported having hysterectomy (HYST, N=1064) and who reported being in natural menopause (MENOP, N=1505) were analyzed for associations of ever use of birth control pills, past pregnancies, live births, and other factors with serum concentrations of six per- and polyfluoroalkyl substances (PFAS). For both HYST and MENOP, PFAS concentrations computed as adjusted geometric means (AGM) were higher among those who took female replacement hormone therapy (HRT) compared to nonusers in multivariable adjusted models, for example PFOS in HRT takers (10.70 ng/mL; 95% C.I. 9.46-12.11) vs. 8.70 ng/mL (95% C.I. 8.07-9.37) in nonusers (p<0.01), and PFOA in HRT users was 2.85 ng/mL (95% C.I. 2.53-3.21) vs. 2.44 ng/mL (95% C.I. 2.32-2.36) in nonusers (p=0.01), with similar findings across race/ethnicity stratifications. HYST participants with retained ovaries sometimes had higher serum PFAS than those without ovaries in post-HYST participants not taking HRT, but results had overlapping confidence intervals in all cases and were inconsistent. PFASs were inversely associated with obesity and directly associated with higher SES as reflected in poverty income ratio (PIR) in most cases, yet HRT results for the entire population are robust to adjustments for obesity and PIR. The results suggest the hypothesis that exogenous hormone use, and specifically estrogen hormones, are associated with higher serum PFAS in postmenopausal women. We discuss potential explanations for the findings, including data from other populations that estrogens may delay the onset of kidney disease, a finding which might paradoxically increase serum PFAS among the HRT population to explain some or all of our findings in a menopausal population.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30019, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
13
|
Wen ZJ, Wei YJ, Zhang YF, Zhang YF. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 2023; 97:1195-1245. [PMID: 36947184 DOI: 10.1007/s00204-023-03477-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Zhao X, Lin JY, Dong WW, Tang ML, Yan SG. Per- and polyfluoroalkyl substances exposure and bone mineral density in the U.S. population from NHANES 2005-2014. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:69-75. [PMID: 35750749 DOI: 10.1038/s41370-022-00452-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Environmental exposures such as perfluoroalkyl substances (PFASs) were considered potential risks for bone mineral density (BMD). OBJECTIVE To examine the associations between PFASs and BMD among the U.S. population. METHODS This study included a total of 6416 participants from the National Health and Nutrition Examination Survey (NHANES 2005-2014). Multiple linear regression models were used to analyze the associations between serum PFASs and BMD and the coefficient β with 95% confidence intervals (95% CI) was calculated as the effect estimate. Covariates such as age, race, BMI, smoking, alcohol intake, milk intake, and physical activity were adjusted in these models. Additionally, gender and menopausal period were considered in further subgroup analyses. RESULTS Based on the combined data of NHANES 2005-2014, the effects from exposure to PFASs on BMD were found with gender and menopausal status differences. Positive associations were found in PFOA (β = 0.010; 95% CI: 0.003, 0.016), PFHxS (β = 0.007; 95% CI: 0.003, 0.012), and PFNA (β = 0.001; 95% CI: 0.001, 0.017) in total population. Negative associations for PFOA (β = -0.020; 95% CI: -0.029, -0.012), PFOS (β = -0.011; 95% CI: -0.028, -0.011), PFHxS (β = -0.019; 95% CI: -0.025, -0.013), PFDE (β = -0.010; 95% CI: -0.016, -0.005), and PFNA (β = -0.011; 95% CI: -0.021, -0.002) were found in women, while no significant association was found in men. In further subgroup analyses, women in pre-menopause status showed consistent negative associations. SIGNIFICANCE PFASs exposure may be associated with BMD and gender and menopausal status confound the associations.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ji-Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wen-Wei Dong
- Department of Orthopaedics, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315000, China
| | - Meng-Ling Tang
- Department of Epidemiology and Biostatistics at School of Public Health and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shi-Gui Yan
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Wang T, Xu H, Guo Y, Li Z, Ye H, Wu L, Guo Y, Wang D. Perfluorodecanoic acid promotes adipogenesis via NLRP3 inflammasome-mediated pathway in HepG2 and 3T3-L1 cells. Food Chem Toxicol 2022; 171:113520. [PMID: 36423729 DOI: 10.1016/j.fct.2022.113520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
Perfluorodecanoic acid (PFDA) is a toxic persistent pollutant that is extensively used in food applications, such as food packaging and cookware. Emerging evidence indicates that PFDA exposure were associated with higher plasma triglyceride concentration in human. In contrast, it is unknown how PFDA might affect adipogenesis. To explore the effects and underlying mechanisms of PFDA on lipid metabolism in this study, both HepG2 cells and 3T3-L1 differentiation model were used. The results showed that PFDA promoted the cellular triglyceride accumulation and triglyceride content in concentration-dependent manners. Furthermore, PFDA activated the NLRP3 inflammasome, which is crucial for the induction of lipogenic genes expression including fatty acid synthase (FAS), hydroxymethylglutaryl coenzyme A synthase (HMGCS), and stearoyl-CoA desaturase 1 (SCD1). Additionally, PFDA-induced adipogenesis was abolished by caspase-1 inhibitor and siNLRP3 in HepG2 cells. Moreover, after PFDA treatment, the expression of SREBP1, an important regulator of lipid metabolism, was increased, as well as its target genes, and PFDA-induced SREBP1 enhanced expression can be abolished by caspase-1 inhibitor and siNLRP3 as well. Together, these results provide to understanding of the potential health implications of exposure to PFDA on lipid accumulation, and suggest that PFDA can promote adipogenesis via an NLRP3 inflammasome-mediated SREBP1 pathway.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Yu Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Liang Wu
- School of Medicine, Jiangsu University, 212013, Zhenjiang, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| |
Collapse
|
16
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|