1
|
Alvarado-Jiménez D, Donzelli G, Morales-Suárez-Varela M. A systematic review on the association between exposure to air particulate matter during pregnancy and the development of hypertensive disorders of pregnancy and gestational diabetes mellitus. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:619-641. [PMID: 37141623 DOI: 10.1515/reveh-2022-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Particulate matter (PM) is considered an intrauterine toxin that can cross the blood-placental barrier and circulate in fetal blood, affecting fetal development, and implicating placental and intrauterine inflammation, and oxidative damage. However, the relationship between PM exposure and adverse pregnancy outcomes is still unclear and our aim was to systematically review toxicological evidence on the link between PM exposure during pregnancy and the development of gestational diabetes mellitus or hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia. PubMed and Science Direct were searched until January 2022. Of the 204 studies identified, 168 were excluded. The remaining articles were assessed in full-text, and after evaluation, 27 were included in the review. Most of the studies showed an association between PM exposure and gestational hypertension, systolic and diastolic blood pressure, pre-eclampsia, and gestational diabetes mellitus. These results should be interpreted with caution due to the heterogeneity of baseline concentrations, which ranged from 3.3 μg/m3 to 85.9 μg/m3 and from 21.8 μg/m3 to 92.2 μg/m3, respectively for PM2.5 and PM10. Moreover, critical exposure periods were not consistent among studies, with five out of ten observational studies reporting the second trimester as the critical period for hypertensive disorders of pregnancy, and ten out of twelve observational studies reporting the first or second trimester as the critical period for gestational diabetes mellitus. Overall, the findings support an association between PM exposure during pregnancy and adverse pregnancy outcomes, highlighting the need for further research to identify the critical exposure periods and underlying mechanisms.
Collapse
Affiliation(s)
| | - Gabriele Donzelli
- Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - María Morales-Suárez-Varela
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Tsuboi N, Hoy WE, Bertram JF. Intervention to kitchen environment for improving birth outcomes. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 27:100446. [PMID: 39100227 PMCID: PMC11294712 DOI: 10.1016/j.lansea.2024.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Wendy E. Hoy
- Centre of Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Zhang S, Hu H, Liu X, Liu Z, Mao Y, Li Z, Huang K, Chen M, Gao G, Hu C, Zhang X. The impact of household fuel usage on adverse pregnancy outcomes in rural Ma'anshan City, Anhui Province: a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100950-100958. [PMID: 37644269 DOI: 10.1007/s11356-023-29543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The combustion of cooking fuels generates detrimental gases significantly impacting human health, particularly for vulnerable populations like expectant mothers. Prenatal exposure of such hazardous emissions raises the probability of adverse pregnancy outcomes, including preterm birth (PTB) and low birth weight (LBW). Our research aims to explore the association between cooking fuel utilization and adverse birth outcomes in rural Ma'anshan, Anhui Province. A prospective cohort study was executed, employing the Maternal and Infant Health Assessment questionnaire to classify fuels into clean (natural gas, electricity) and polluting energy sources (coal, coal gas, firewood). Multivariate logistic regression models were conducted to evaluate the association between fuel consumption and postpartum maternal and infant outcomes. Among the 442 surveyed pregnant women, 38.2% (N=169) utilized polluting fuels. After adjusting for covariates such as age and BMI, the relative risks of preterm birth, low birth weight, and postpartum hemorrhage in the polluting fuel group compared to the clean fuel group were OR: 3.27, 95% CI: 1.34, 8.00; OR: 3.50, 95% CI: 1.12, 10.90; and OR: 3.18, 95% CI: 1.06, 9.46, respectively. These results indicate that the usage of polluting fuels during pregnancy may heighten the risk of adverse birth outcomes. Consequently, additional research is advised to mitigate the harmful emissions generated by cooking fuels and advocate for clean energy adoption, enhancing maternal and infant well-being.
Collapse
Affiliation(s)
- Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Huiyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xuejie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yicheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhenhua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Maolin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Guopeng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
4
|
Younger A, Alkon A, Harknett K, Kirby MA, Elon L, Lovvorn AE, Wang J, Ye W, Diaz-Artiga A, McCracken JP, Castañaza Gonzalez A, Monroy Alarcon L, Mukeshimana A, Rosa G, Chiang M, Balakrishnan K, Garg SS, Pillarisetti A, Piedrahita R, Johnson M, Craik R, Papageorghiou AT, Toenjes A, Quinn A, Williams KN, Underhill L, Chang HH, Naeher LP, Rosenthal J, Checkley W, Peel JL, Clasen TF, Thompson LM. Effects of a LPG stove and fuel intervention on adverse maternal outcomes: A multi-country randomized controlled trial conducted by the Household Air Pollution Intervention Network (HAPIN). ENVIRONMENT INTERNATIONAL 2023; 178:108059. [PMID: 37413928 PMCID: PMC10445187 DOI: 10.1016/j.envint.2023.108059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Household air pollution from solid cooking fuel use during gestation has been associated with adverse pregnancy and birth outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial of free liquefied petroleum gas (LPG) stoves and fuel in Guatemala, Peru, India, and Rwanda. A primary outcome of the main trial was to report the effects of the intervention on infant birth weight. Here we evaluate the effects of a LPG stove and fuel intervention during pregnancy on spontaneous abortion, postpartum hemorrhage, hypertensive disorders of pregnancy, and maternal mortality compared to women who continued to use solid cooking fuels. Pregnant women (18-34 years of age; gestation confirmed by ultrasound at 9-19 weeks) were randomly assigned to an intervention (n = 1593) or control (n = 1607) arm. Intention-to-treat analyses compared outcomes between the two arms using log-binomial models. Among the 3195 pregnant women in the study, there were 10 spontaneous abortions (7 intervention, 3 control), 93 hypertensive disorders of pregnancy (47 intervention, 46 control), 11 post postpartum hemorrhage (5 intervention, 6 control) and 4 maternal deaths (3 intervention, 1 control). Compared to the control arm, the relative risk of spontaneous abortion among women randomized to the intervention was 2.32 (95% confidence interval (CI): 0.60, 8.96), hypertensive disorders of pregnancy 1.02 (95% CI: 0.68, 1.52), postpartum hemorrhage 0.83 (95% CI: 0.25, 2.71) and 2.98 (95% CI: 0.31, 28.66) for maternal mortality. In this study, we found that adverse maternal outcomes did not differ based on randomized stove type across four country research sites.
Collapse
Affiliation(s)
- Ashley Younger
- School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Abbey Alkon
- School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Kristen Harknett
- School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Miles A Kirby
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Lisa Elon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amy E Lovvorn
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wenlu Ye
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Anaité Diaz-Artiga
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - John P McCracken
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | | | - Libny Monroy Alarcon
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Ghislaine Rosa
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Marilu Chiang
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore MD, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Sarada S Garg
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Ajay Pillarisetti
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | | | | | - Rachel Craik
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Aris T Papageorghiou
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Ashley Toenjes
- Cardiovascular Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Kendra N Williams
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lindsay Underhill
- Cardiovascular Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Luke P Naeher
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Joshua Rosenthal
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas F Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lisa M Thompson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Ye W, Pillarisetti A, de León O, Steenland K, Peel JL, Clark ML, Checkley W, Underhill LJ, Quinn A, Balakrishnan K, Garg SS, McCracken JP, Thompson LM, Díaz-Artiga A, Rosa G, Davila-Roman VG, de las Fuentes L, Papageorghiou AT, Chen Y, Wang J, Thomas FC. Baseline associations between household air pollution exposure and blood pressure among pregnant women in the Household Air Pollution Intervention Network (HAPIN) multi-country randomized controlled trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.23.23284847. [PMID: 36747716 PMCID: PMC9901046 DOI: 10.1101/2023.01.23.23284847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cooking and heating using solid fuels can result in dangerous levels of exposure to household air pollution (HAP). HAPIN is an ongoing randomized controlled trial assessing the impact of a liquified petroleum gas stove and fuel intervention on HAP exposure and health in Guatemala, India, Peru, and Rwanda among households that rely primarily on solid cooking fuels. Given the potential impacts of HAP exposure on cardiovascular outcomes during pregnancy, we seek to characterize the relationship between personal exposures to HAP and blood pressure among pregnant women at baseline (prior to intervention) in the study. We assessed associations between PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), BC (black carbon), and CO (carbon monoxide) exposures and blood pressure at baseline, prior to intervention, among 3195 pregnant women between 9 and 19 weeks of gestation. We measured 24-hour personal exposure to PM2.5/BC/CO and gestational blood pressure. Multivariable linear regression models were used to evaluate associations between personal exposures to three air pollutants and blood pressure parameters. Trial-wide, we found moderate increases in systolic blood pressure (SBP) and decreases in diastolic blood pressure (DBP) as exposure to PM2.5, BC, and CO increased. None of these associations, however, were significant at the 0.05 level. HAP exposure and blood pressure associations were inconsistent in direction and magnitude within each country. We observed effect modification by body mass index (BMI) in India and Peru. Compared to women with normal weights, obese women in India and Peru (but not in Rwanda or Guatemala) had higher SBP per unit increase in log transformed PM2.5 and BC exposures. We did not find a cross-sectional association between HAP exposure and blood pressure in pregnant women; however, HAP may be associated with higher blood pressure in pregnant women who are obese, but this increase was not consistent across settings.
Collapse
Affiliation(s)
- Wenlu Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Oscar de León
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsay J. Underhill
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Berkeley, California, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Sarada S. Garg
- Department of Environmental Health Engineering, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - John P. McCracken
- Global Health Institute, Collage of Public Health, University of Georgia, Athens, Georgia, USA
| | - Lisa M. Thompson
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Anaité Díaz-Artiga
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Lisa de las Fuentes
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Aris T. Papageorghiou
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|