1
|
You LX, Zhong HL, Chen SR, Sun YN, Wu GK, Zhao MX, Hu SS, Alwathnani H, Herzberg M, Qin SF, Rensing C. Biosynthesis of silver nanoparticles using Burkholderia contaminans ZCC and mechanistic analysis at the proteome level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116425. [PMID: 38723385 DOI: 10.1016/j.ecoenv.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hong-Lin Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Shan-Shan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Su-Fang Qin
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
2
|
Cheng M, Liang L, Sun Y, Zhang H, Hu X. Reduction of selenite and tellurite by a highly metal-tolerant marine bacterium. Int Microbiol 2024; 27:203-212. [PMID: 37261581 DOI: 10.1007/s10123-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se0 and Te0 Se(IV)/Te(IV) to Se0/Te0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT‒qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se0/or Te0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution.
Collapse
Affiliation(s)
- Manman Cheng
- College of Life Sciences, Yantai University, Yantai, 264000, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China
| | - Likun Liang
- College of Life Sciences, Yantai University, Yantai, 264000, China
| | - Yanyu Sun
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China.
| | - Xiaoke Hu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China.
| |
Collapse
|
3
|
Bhandari Y, Varma S, Sawant A, Beemagani S, Jaiswal N, Chaudhari BP, Vamkudoth KR. Biosynthesis of gold nanoparticles by Penicillium rubens and catalytic detoxification of ochratoxin A and organic dye pollutants. Int Microbiol 2023; 26:765-780. [PMID: 36853416 DOI: 10.1007/s10123-023-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 03/01/2023]
Abstract
The environmental pollution caused by chemical dyes is a growing concern nowadays. Limitations of traditional methods opened the route for nanotechnology; owing to the versatile properties of nanomaterials, gold nanoparticles (AuNPs) became a potential strategy for different applications. In the present study, biosynthesis of gold nanoparticles (BioAuNPs) was carried out by reacting chloroauric acid (HAuCl4) with cell-free filtrate of Penicillium rubens sp. nov. NCIM 1937. The AuNPs were then characterized by UV-visible spectroscopy, HR-TEM, FTIR, and DLS analysis to further examine their efficacious biosynthesis and morphological properties including size, shape, and stability. The biogenic AuNPs are polydisperse in nature, with a mean size of 14.92 ± 5 nm. These AuNPs exhibited promising antimicrobial activity against Escherichia coli NCIM-2065, Bacillus subtilis NCIM-2010, and Penicillium verrucosum MTCC 4935. In vitro quantitative HPLC results revealed that BioAuNPs significantly inhibited the biosynthesis of ochratoxin A (OTA). Microbial fuel cells (MFCs) are intriguing for power generation and wastewater treatment since they can directly transform chemical energy stored in organic matter to electricity by extracellular electron transfer (EET) via membrane proteins. AuNPs also showed excellent potential for dye degradation of organic pollutants, viz., methylene blue (MB), phenol red (PR), bromothymol blue (BTB), Congo red (CR), and 4-nitrophenol (4-NP). All dye removal efficiencies were estimated and fitted to pseudo-first-order processes using kinetic rate constants (Ka).The present study reveals a simple, original, and eco-friendly method for the synthesis of multifunctional biogenic AuNPs that could be effective in OTA detoxification in food products and organic pollutant removal during wastewater treatment for a sustainable environment.
Collapse
Affiliation(s)
- Yogesh Bhandari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Sanjana Varma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sreelatha Beemagani
- Department of Microbiology, Chaitanya Deemed to Be University, Telangana, India
| | - Neha Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Verma M, Singh V, Mishra V. Moving towards the enhancement of extracellular electron transfer in electrogens. World J Microbiol Biotechnol 2023; 39:130. [PMID: 36959310 DOI: 10.1007/s11274-023-03582-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Electrogens are very common in nature and becoming a contemporary theme for research as they can be exploited for extracellular electron transfer. Extracellular electron transfer is the key mechanism behind bioelectricity generation and bioremediation of pollutants via microbes. Extracellular electron transfer mechanisms for electrogens other than Shewanella and Geobacter are less explored. An efficient extracellular electron transfer system is crucial for the sustainable future of bioelectrochemical systems. At present, the poor extracellular electron transfer efficiency remains a decisive factor in limiting the development of efficient bioelectrochemical systems. In this review article, the EET mechanisms in different electrogens (bacteria and yeast) have been focused. Apart from the well-known electron transfer mechanisms of Shewanella oneidensis and Geobacter metallireducens, a brief introduction of the EET pathway in Rhodopseudomonas palustris TIE-1, Sideroxydans lithotrophicus ES-1, Thermincola potens JR, Lysinibacillus varians GY32, Carboxydothermus ferrireducens, Enterococcus faecalis and Saccharomyces cerevisiae have been included. In addition to this, the article discusses the several approaches to anode modification and genetic engineering that may be used in order to increase the rate of extracellular electron transfer. In the side lines, this review includes the engagement of the electrogens for different applications followed by the future perspective of efficient extracellular electron transfer.
Collapse
Affiliation(s)
- Manisha Verma
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Singh
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India.
| |
Collapse
|
5
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|