1
|
Li JM, Zhao SM, Miao QY, Wu SP, Zhang J, Schwab JJ. Changes in source contributions to the oxidative potential of PM 2.5 in urban Xiamen, China. J Environ Sci (China) 2025; 149:342-357. [PMID: 39181647 DOI: 10.1016/j.jes.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 08/27/2024]
Abstract
The toxicity of PM2.5 does not necessarily change synchronously with its mass concentration. In this study, the chemical composition (carbonaceous species, water-soluble ions, and metals) and oxidative potential (dithiothreitol assay, DTT) of PM2.5 were investigated in 2017/2018 and 2022 in Xiamen, China. The decrease rate of volume-normalized DTT (DTTv) (38%) was lower than that of PM2.5 (55%) between the two sampling periods. However, the mass-normalized DTT (DTTm) increased by 44%. Clear seasonal patterns with higher levels in winter were found for PM2.5, most chemical constituents and DTTv but not for DTTm. The large decrease in DTT activity (84%-92%) after the addition of EDTA suggested that water-soluble metals were the main contributors to DTT in Xiamen. The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022 were observed. The decrease rates of the hazard index (32.5%) and lifetime cancer risk (9.1%) differed from those of PM2.5 and DTTv due to their different main contributors. The PMF-MLR model showed that the contributions (nmol/(min·m3)) of vehicle emission, coal + biomass burning, ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%, 65.2%, 66.5%, and 22.2%, respectively, compared to those in 2017/2018, which was consistent with the emission reduction of vehicle exhaust and coal consumption, the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC. However, the contributions of dust + sea salt and industrial emission increased.
Collapse
Affiliation(s)
- Jia-Min Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Si-Min Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qi-Yu Miao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12226, USA
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12226, USA
| |
Collapse
|
2
|
Wang Q, Song H, Dong H, Guo S, Yao M, Wan Y, Lu K. Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:1-13. [PMID: 39839244 PMCID: PMC11744397 DOI: 10.1021/envhealth.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/23/2025]
Abstract
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM2.5) and ozone (O3) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems. Extensive epidemiological and toxicological research highlights the pivotal role of ROS in air pollution-related diseases. It is crucial to comprehend the intricate chemical processes and accompanying physiological effects of ROS from air pollutants. This review aims to systematically summarize ROS generation mechanisms in the ELF and measurement techniques of oxidative potential (OP), taking the kinetic reactions of ROS cycling in the ELF as an example, and discusses the general health implications of ROS in respiratory, cardiovascular, and central nervous systems. Understanding these processes through interdisciplinary research is essential to develop effective and precise strategies as well as air quality standards to mitigate the public health impacts of air pollution globally.
Collapse
Affiliation(s)
- Qineng Wang
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huan Song
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huabin Dong
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Wan
- College
of Urban and Environmental Sciences, Peking
University, Beijing 100871, China
| | - Keding Lu
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li Y, Wang X, Xu P, Gui J, Guo X, Yan G, Fei X, Yang A. Chemical characterization and source identification of PM 2.5 in the Huaxi urban area of Guiyang. Sci Rep 2024; 14:30451. [PMID: 39668154 PMCID: PMC11638253 DOI: 10.1038/s41598-024-81048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
In 2020, 123 PM2.5 samples were collected across different seasons in Huaxi District, Guiyang. The primary chemical components of PM2.5, including water-soluble ions (WSIIs), metallic elements, organic carbon (OC), and elemental carbon (EC), were analyzed. During the sampling period, the average PM2.5 concentration was 39.7 ± 22.3 µg/m2. Chemical mass closure (CMC) was used to reconstruct PM2.5 mass, yielding a reconstructed concentration of 29.1 ± 16.5 µg/m2. The major components were organic matter (OM), sulfate + nitrate + ammonium (SNA), and mineral dust (MD), with mean concentrations of 12.2 ± 6.3 µg/m2, 8.2 ± 4.0 µg/m2, and 6.3 ± 4.6 µg/m2, respectively. From clean days (CD) to lightly-moderately polluted days (LMPD), nitrate oxidation ratio (NOR) increased from 0.09 to 0.16, while sulfate oxidation ratio (SOR) and OC/EC ratio rose by 21.7% and 13.5%, indicating stronger secondary reactions on polluted days. The study also examined changes in chemical components under different atmospheric oxidizing and humidity conditions, revealing that sulfate and nitrate concentrations increased with relative humidity (RH) between 60 and 80%, while other components, especially MD, showed a declining trend due to hygroscopic growth and subsequent gravitational settling and precipitation. The average NO3-/SO42- ratio was 0.67, indicating that fixed sources such as industrial and coal emissions were the main contributors to PM2.5. This study provides insights into the chemical composition, pollution processes, and formation mechanisms of PM2.5, which are crucial for developing effective air pollution control strategies. Furthermore, source apportionment was conducted with the positive matrix factorization (PMF) model. The Coal combustion, secondary, traffic, Industrial and dust source contributions to the PM2.5 mass were approximately 30.5%, 20.0%, 18.3%,16.7% and 14.5%, respectively.
Collapse
Affiliation(s)
- Yunwu Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xianqin Wang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Peng Xu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Jiaqun Gui
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xingqiang Guo
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xuehai Fei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Liu H, Xu M, Yang Y, Cheng K, Liu Y, Fan Y, Yao D, Tian D, Li L, Zhao X, Zhang R, Xu Y. The oxidative potential of fine ambient particulate matter in Xinxiang, North China: Pollution characteristics, source identification and regional transport. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124615. [PMID: 39059700 DOI: 10.1016/j.envpol.2024.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can trigger the production of cytotoxic reactive oxygen species (ROS), which can trigger or exacerbate oxidative stress and pulmonary inflammation. We collected 111 daily (∼24 h) ambient PM2.5 samples within an urban region of North China during four seasons of 2019-2020. PM2.5 samples were examined for carbonaceous components, water-soluble ions, and elements, together with their oxidative potential (represent ROS-producing ability) by DTT assay. The seasonal peak DTTv was recorded in winter (2.86 ± 1.26 nmol min-1 m-3), whereas the DTTm was the highest in summer (40.6 ± 8.7 pmol min-1 μg-1). WSOC displayed the highest correlation with DTT activity (r = 0.84, p < 0.0001), but the influence of WSOC on the elevation of DTTv was extremely negligible. Combustion source exhibited the most significant and robust correlation with the elevation of DTTv according to the linear mixed-effects model result. Source identification investigation using positive matrix factorization displayed that combustion source (36.2%), traffic source (30.7%), secondary aerosol (15.7%), and dust (14.1%) were driving the DTTv, which were similar to the results from the multiple linear regression (MLR) analysis. Backward trajectory analysis revealed that the major air masses originate from local and regional transportation, but PM2.5 OP was more susceptible to the influence of short-distance transport clusters. Discerning the influence of chemicals on health-pertinent attributes of PM2.5, such as OP, could facilitate a deep understanding of the cause-and-effect relationship between PM2.5 and impacts.
Collapse
Affiliation(s)
- Huanjia Liu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China; School of Ecology & Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mengyuan Xu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ying Yang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ke Cheng
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yongli Liu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yujuan Fan
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Dan Yao
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Di Tian
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Lanqing Li
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xingzi Zhao
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ruiqin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadi Xu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Wei Y, Chen Y, Hong Y, Chen J, Li HB, Li H, Yao X, Mehmood T, Feng X, Luo XS. Comparative in vitro toxicological effects of water-soluble and insoluble components of atmospheric PM 2.5 on human lung cells. Toxicol In Vitro 2024; 98:105828. [PMID: 38621549 DOI: 10.1016/j.tiv.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Fine particulates in city air significantly impact human health, but the hazardous compositional mechanisms are still unclear. Besides the toxicity of environmental PM2.5 to in vitro human lung epithelial cells (A549), the independent cytotoxicity of PM2.5-bound water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions were also compared by cell viability, oxidative stress (reactive oxygen species, ROS), and inflammatory injury (IL-6 and TNF-α). The cytotoxicity of PM2.5 varied significantly by sampling season and place, with degrees greater in winter and spring than in summer and autumn, related to corresponding trend of air PM2.5 level, and also higher in industrial than urban site, although their PM2.5 pollution levels were comparable. The PM2.5 bound metals (Ni, Cr, Fe, and Mn) may contribute to cellular injury. Both WS-PM2.5 and WIS-PM2.5 posed significant cytotoxicity, that WS-PM2.5 was more harmful than WIS-PM2.5 in terms of decreasing cell viability and increasing inflammatory cytokines production. In particular, industrial samples were usually more toxic than urban samples, and those from summer were generally less toxic than other seasons. Hence, in order to mitigate the health risks of PM2.5 pollution, the crucial targets might be components of heavy metals and soluble fractions, and sources in industrial areas, especially during the cold seasons.
Collapse
Affiliation(s)
- Yaqian Wei
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xuewen Yao
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, Leipzig D-04318, Germany
| | - Xinyuan Feng
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
6
|
Victoria S, Trine L, Hystad P, Roper C. Indoor and Personal PM 2.5 Samples Differ in Chemical Composition and Alter Zebrafish Behavior Based on Primary Fuel Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21260-21271. [PMID: 38060427 DOI: 10.1021/acs.est.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Fine particulate matter (PM2.5) exposure has been linked to diverse human health impacts. Little is known about the potential heterogeneous impacts of PM2.5 generated from different indoor fuel sources and how exposure differs between personal and indoor environments. Therefore, we used PM2.5 collected by one stationary sampler in a kitchen and personal samplers (female and male participants), in homes (n = 24) in Kheri, India, that used either biomass or liquified petroleum gas (LPG) as primary fuel sources. PM2.5 samples (pooled by fuel type and monitor placement) were analyzed for oxidative potential and chemical composition, including elements and 125 organic compounds. Zebrafish (Danio rerio) embryos were acutely exposed to varying concentrations of PM2.5 and behavioral analyses were conducted. We found relatively high PM2.5 concentrations (5-15 times above World Health Organization daily exposure guidelines) and varied human health-related chemical composition based on fuel type and monitor placement (up to 15% carcinogenic polycyclic aromatic hydrocarbon composition). Altered biological responses, including changes to mortality, morphology, and behavior, were elicited by exposure to all sample types. These findings reveal that although LPG is generally ranked the least harmful compared to biomass fuels, chemical characteristics and biological impacts were still present, highlighting the need for further research in determining the safety of indoor fuel sources.
Collapse
Affiliation(s)
- Shayla Victoria
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Lisandra Trine
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Famiyeh L, Jia C, Chen K, Tang YT, Ji D, He J, Guo Q. Size distribution and lung-deposition of ambient particulate matter oxidative potential: A contrast between dithiothreitol and ascorbic acid assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122437. [PMID: 37634565 DOI: 10.1016/j.envpol.2023.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Particulate matter (PM) inhaled into human lungs causes oxidative stress and adverse health effects through antioxidant depletion (oxidative potential, OP). However, there is limited knowledge regarding the association between the lung-deposited dose (LDD) of PM and OP in extrathoracic (ET), tracheobronchial (TB), and pulmonary (P) regions of human lungs. Dithiothreitol (DTT) and ascorbic acid (AA) assays were employed to measure the OP of PM size fractions to investigate OP distribution in human lungs and identify the chemical drivers. Quasi-ultrafine particles (quasi-UFP, ≤0.49 μm) exhibited high OP deposition in the TB and P regions, while coarse particles (CP, ≥3.0 μm) dominated in the ET region. A plot of extrinsic (per air volume) and intrinsic (per PM mass) OP versus LDD revealed that the OP for fine and coarse particles was greatest in the ET region, whereas the OP of quasi-UFP was greatest in alveoli. The study also demonstrated that extrinsic OP and PM doses are not strongly related. The decline in OP with increasing PM dose reveals the need for further investigation of the antagonistic effects of the chemical compositions. Overall, the results presented herein help address the gap in knowledge regarding the association between the OP and LDD of ambient particles in specific regions of human lungs.
Collapse
Affiliation(s)
- Lord Famiyeh
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Chunrong Jia
- School of Public Health, University of Memphis, Memphis, TN, 38152, USA
| | - Ke Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Yu-Ting Tang
- School of Geographical Sciences, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Dongsheng Ji
- State Kay Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China; Nottingham Ningbo China Beacon of Excellence Research and Innovation Institute, Ningbo 315100, China.
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Lin W, Lai Y, Zhuang S, Wei Q, Zhang H, Hu Q, Cheng P, Zhang M, Zhai Y, Wang Q, Han Z, Hou H. The effects of prenatal PM 2.5 oxidative potential exposure on feto-placental vascular resistance and fetal weight: A repeated-measures study. ENVIRONMENTAL RESEARCH 2023; 234:116543. [PMID: 37406720 DOI: 10.1016/j.envres.2023.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Feto-placental hemodynamic deterioration is a critical contributing factor to fetal growth restriction. Whether PM2.5 oxidative potential (OP) affects feto-placental hemodynamics and what impact is on estimated fetal weight (EFW) have not been fully elucidated. We sought to evaluate the association of PM2.5 OP with EFW and to explore whether feto-placental vascular impedance hemodynamic change is a possible mediator in this association. METHODS A repeated-measures study was conducted involving sixty pregnant women with at least 26 weeks of follow-up during pregnancy in Guangzhou, China, from September 2017 to October 2018. Daily filter-based PM2.5 samples were prospectively collected from ground monitors, and estimates of OP for PM2.5 and its metallic (OPv-metal) and non-metallic constituents (OPv-nonmental) were determined by dithiothreitol assay. Ultrasound data of fetal growth and umbilical arterial resistance, including estimated fetal weight (EFW), pulsatility index, resistance index, and systolic-to-diastolic ratio, were also obtained during gestation. Generalized estimating equations and polynomial distribution lag models were applied to analyze the associations of maternal exposure to PM2.5 OP with EFW and umbilical artery indices. Causal mediation analysis was used to evaluate the mediating role of umbilical arterial resistance. RESULTS Prenatal exposure to ambient PM2.5 OP was significantly inversely associated with EFW. The magnitudes of effects of OPv-nonmetal on EFW were larger than those of OPv-metal. Significant mediation for the relationship between PM2.5-related OP and EFW by increased impedance in the umbilical artery was observed, with the estimated percent mediated ranging from 31% to 61%. The estimated percent mediated for OPv-nonmetal was higher than those for OPv-metal. CONCLUSIONS Findings suggest that increased impedance in the umbilical artery may be one of the potential mediators of the relationship between PM2.5 oxidative potential exposure and low fetal weight.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yuming Lai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuling Zhuang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiannan Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hedi Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering, Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China.
| | - Manman Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering, Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Yuhong Zhai
- Guangdong Ecological and Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Qingqing Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510632, China
| | - Zhenyan Han
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510632, China
| | - Hongying Hou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510632, China
| |
Collapse
|